Learn More
Leucine-rich repeats (LRRs) are 20-29-residue sequence motifs present in a number of proteins with diverse functions. The primary function of these motifs appears to be to provide a versatile structural framework for the formation of protein-protein interactions. The past two years have seen an explosion of new structural information on proteins with LRRs.(More)
Leucine-rich repeats are short sequence motifs present in a number of proteins with diverse functions and cellular locations. All proteins containing these repeats are thought to be involved in protein-protein interactions. The crystal structure of ribonuclease inhibitor protein has revealed that leucine-rich repeats correspond to beta-alpha structural(More)
Although proteins are translated on cytoplasmic ribosomes, many of these proteins play essential roles in the nucleus, mediating key cellular processes including but not limited to DNA replication and repair as well as transcription and RNA processing. Thus, understanding how these critical nuclear proteins are accurately targeted to the nucleus is of(More)
Plant resistance proteins (R proteins) recognize corresponding pathogen avirulence (Avr) proteins either indirectly through detection of changes in their host protein targets or through direct R-Avr protein interaction. Although indirect recognition imposes selection against Avr effector function, pathogen effector molecules recognized through direct(More)
Solenoid proteins contain repeating structural units that form a continuous superhelix. This category of proteins conveys the least complicated relationship between a sequence and the corresponding three-dimensional structure. Although solenoid proteins are divided into different classes according to commonly used classification schemes, they share many(More)
The large number of protein kinases makes it impractical to determine their specificities and substrates experimentally. Using the available crystal structures, molecular modeling, and sequence analyses of kinases and substrates, we developed a set of rules governing the binding of a heptapeptide substrate motif (surrounding the phosphorylation site) to the(More)
BIOLOGY IS ENCODED IN MOLECULAR SEQUENCES: deciphering this encoding remains a grand scientific challenge. Functional regions of DNA, RNA, and protein sequences often exhibit characteristic but subtle motifs; thus, computational discovery of motifs in sequences is a fundamental and much-studied problem. However, most current algorithms do not allow for(More)
Importin-alpha is the nuclear import receptor that recognizes cargo proteins which contain classical monopartite and bipartite nuclear localization sequences (NLSs), and facilitates their transport into the nucleus. To determine the structural basis of the recognition of the two classes of NLSs by mammalian importin-alpha, we co-crystallized an N-terminally(More)
Classical nuclear localization signals (cNLSs), comprising one (monopartite cNLSs) or two clusters of basic residues connected by a 10-12 residue linker (bipartite cNLSs), are recognized by the nuclear import factor importin-α. The cNLSs bind along a concave groove on importin-α; however, specificity determinants of cNLSs remain poorly understood. We(More)
The leucine-rich repeat is a recently characterized structural motif used in molecular recognition processes as diverse as signal transduction, cell adhesion, cell development, DNA repair and RNA processing. We present here the crystal structure at 2.5 A resolution of the complex between ribonuclease A and ribonuclease inhibitor, a protein built entirely of(More)