Learn More
A three-dimensional Voronoi tessellation of folded proteins is used to analyze geometrical and topological properties of a set of proteins. To each amino acid is associated a central point surrounded by a Voronoi cell. Voronoi cells describe the packing of the amino acids. Special attention is given to reproduction of the protein surface. Once the Voronoi(More)
The differential geometry of a normal red blood cell is treated using the Cassinian oval for modelling its profile. In this connection an explicit parametrization via Jacobian elliptic functions of the usual polar coordinates is found. The first and the second fundamental forms, and correspondingly, the Gaussian, mean, and principal curvatures, are derived.(More)
UNLABELLED Voro3D is an original easy-to-use tool, which provides a brand new point of view on protein structures through the three-dimensional (3D) Voronoi tessellations. To construct the Voronoi cells associated with each amino acid by a number of different tessellation methods, Voro3D uses a protein structure file in the PDB format as an input. After(More)
Deficits or overexpression of neurotrophins cause neurodegenerative diseases and psychiatric disorders. These proteins are required for the maintenance of the function, plasticity and survival of neurons in the central (CNS) and peripheral nervous systems. Significant efforts have been devoted to developing therapeutic delivery systems that enable control(More)
Nanoparticulate systems for neurotrophic factor delivery are currently studied in an attempt to solve some of the challenges in neurodegenerative disease treatment. Nanomedicine for brain disorders has faced difficulties in cerebral administraton of fragile neurotrophic proteins and high costs. According to recent studies, the signaling protein(More)
  • 1