Learn More
BACKGROUND/PURPOSE In recent years, microneedles were proposed as a method to painlessly deliver drugs past the stratum corneum. Microneedles have been fabricated in several designs, but limited studies have tested microneedle injections in humans. In this work, we compare microneedle injections with topical application (TA) to investigate if microneedles(More)
A microfabrication process for miniature syringes is described. The MEMS syringes consist of a silicon plate with an array of hollow out-of-plane needles and a flexible poly-dimethylsiloxane (PDMS) reservoir attached to the back of the plate. The PDMS reservoir can be filled with a drug solution or microparticle suspension which is delivered into the skin(More)
BACKGROUND/OBJECTIVE Solid and hollow microneedles hold potential for painless vaccinations and drug injections. Hollow microneedles offer the potential for short-term bolus injections and long-term continuous injections. However, efficient injection requires complete penetration through the lipophilic stratum corneum. Furthermore, human skin is elastic,(More)
We demonstrate for the first time a proof of concept projector with a secondary array of individually controllable, analog micromirrors added to improve the contrast and peak brightness of conventional projectors. The micromirrors reallocate the light of the projector lamp from the dark parts towards the light parts of the image, before it reaches the(More)
After intravenous injection, particles larger than red blood cells will be trapped in the first capillary bed that they encounter. This is the principle of lung perfusion imaging in nuclear medicine, where macroaggregated albumin (MAA) is radiolabeled with (99m)Tc, infused into a patient's arm vein, and then imaged with gamma scintigraphy. Our aim was to(More)
Paper is a ubiquitous material that has various applications in day to day life. A sheet of paper is produced by pressing moist wood cellulose fibers together. Paper offers unique properties: paper allows passive liquid transport, it is compatible with many chemical and biochemical moieties, it exhibits piezoelectricity, and it is biodegradable. Hence,(More)
We have successfully developed hybrid piezoelectric paper through fiber functionalization that involves anchoring nanostructured BaTiO3 into a stable matrix with wood cellulose fibers prior to the process of making paper sheets. This is realized by alternating immersion of wood fibers in a solution of poly(diallyldimethylammonium chloride) PDDA (+),(More)