Boris Stoeber

Learn More
We demonstrate for the first time a proof of concept projector with a secondary array of individually controllable, analog micromirrors added to improve the contrast and peak brightness of conventional projectors. The micromirrors reallocate the light of the projector lamp from the dark parts towards the light parts of the image, before it reaches the(More)
A microfabrication process for miniature syringes is described. The MEMS syringes consist of a silicon plate with an array of hollow out-of-plane needles and a flexible poly-dimethylsiloxane (PDMS) reservoir attached to the back of the plate. The PDMS reservoir can be filled with a drug solution or microparticle suspension which is delivered into the skin(More)
The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random(More)
Collecting human skin samples for medical research, including developing microneedle-based medical devices, is challenging and time-consuming. Researchers rely on human skin substitutes and skin preservation techniques, such as freezing, to overcome the lack of skin availability. Porcine skin is considered the best substitute to human skin, but their(More)
We demonstrate a new design for micromirror arrays that allow for high tilt angles (0.75deg) of mirror elements in arbitrary directions, large actuated areas (0.64 mm<sup>2</sup>), and high actuation bandwidth (measured resonant frequencies range from 100 to 450 kHz). This is achieved by subdividing each actuated mirror into several small submirrors that(More)
This paper reports on the design, fabrication and demonstration of a polydimethylsiloxane (PDMS)/SU-8 inkjet dispenser with the following novel features: (1) the use of low-cost fabrication process and bio-compatible materials, (2) the use of hydrophobic SU-8 micro-nozzles to limit satellite droplet formation, (3) a modular device design that allows for the(More)
Therapeutic drug monitoring (TDM) typically requires painful blood drawn from patients. We propose a painless and minimally-invasive alternative for TDM using hollow microneedles suitable to extract extremely small volumes (<1 nL) of interstitial fluid to measure drug concentrations. The inner lumen of a microneedle is functionalized to be used as a(More)
  • 1