Learn More
In this paper we obtain the necessary and sufficient conditions for embedding results of different function classes. The main result is a criterion for embedding theorems for the so-called generalized Weyl-Nikol'skii class and the generalized Lipschitz class. To define the Weyl-Nikol'skii class, we use the concept of a (λ, β)-derivative, which is a(More)
In this paper we study embedding theorems of function classes, which are subclasses of L p , 1 ≤ p ≤ ∞. To define these classes, we use the notion of best trigonometric approximation as well as that of a (λ, β)-derivative, which is the generalization of a fractional derivative. Estimates of best approximations of transformed Fourier series are obtained.
In this paper we obtain the necessary and sufficient conditions for embedding results of different function classes. The main result is a criterion for embedding theorems for the so-called generalized Weyl-Nikol'skii class and the generalized Lipschitz class. To define the Weyl-Nikol'skii class, we use the concept of a (λ, β)-derivative, which is a(More)
  • 1