Learn More
Identification of expanding roles for matrix metalloproteinases (MMPs) in complex regulatory processes of tissue remodelling has stimulated the search for genes encoding proteinases with unique functions, regulation and expression patterns. By using a novel cloning strategy, we identified three previously unknown human MMPs, i.e. MMP-21, MMP-26 and MMP-28,(More)
BACKGROUND Integrin receptors, composed of transmembrane alpha and beta subunits, are essential for the development and functioning of multicellular animals. Agonist stimulation leads cells to regulate integrin affinity ("activation"), thus controlling cell adhesion and migration, controlling extracellular-matrix assembly, and contributing to angiogenesis,(More)
We evaluated cellular mechanisms involved in the activation pathway of matrix prometalloproteinase-2 (pro-MMP-2), an enzyme implicated in the malignant progression of many tumor types. Membrane type-1 matrix metalloproteinase (MT1-MMP) cleaves the N-terminal prodomain of pro-MMP-2 thus generating the activation intermediate that then matures into the fully(More)
Increased affinity of integrins for the extracellular matrix (activation) regulates cell adhesion and migration, extracellular matrix assembly, and mechanotransduction. Major uncertainties concern the sufficiency of talin for activation, whether conformational change without clustering leads to activation, and whether mechanical force is required for(More)
Cell invasion requires cooperation between adhesion receptors and matrix metalloproteinases (MMPs). Membrane type (MT)-MMPs have been thought to be primarily involved in the breakdown of the extracellular matrix. Our report presents evidence that MT-MMPs in addition to the breakdown of the extracellular matrix may be engaged in proteolysis of adhesion(More)
Membrane type-1 matrix metalloproteinase (MT1-MMP) and alpha(v)beta(3) integrin are both essential to cell invasion. Maturation of integrin pro-alpha(v)chain (pro-alpha(v)) involves its cleavage by proprotein convertases (PC) to form the disulfide-bonded 125-kDa heavy and 25-kDa light alpha chains. Our report presents evidence of an alternative pathway of(More)
Proline metabolism is linked to hyperprolinemia, schizophrenia, cutis laxa, and cancer. In the latter case, tumor cells tend to rely on proline biosynthesis rather than salvage. Proline is synthesized from either glutamate or ornithine; both are converted to pyrroline-5-carboxylate (P5C), and then to proline via pyrroline-5-carboxylate reductases (PYCRs).(More)
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a key enzyme in the activation pathway of matrix prometalloproteinase-2 (pro-MMP-2). Both activation and autocatalytic maturation of pro-MMP-2 in trans suggest that MT1-MMP should exist as oligomers on the cell surface. To better understand the functions of MT1-MMP, we designed mutants with substitutions(More)
Rho family small GTPases are critical regulators of multiple cellular processes and activities. Dbl homology domain-containing proteins are the classical guanine nucleotide exchange factors (GEFs) responsible for activation of Rho proteins. Recently another group of mammalian Rho-GEFs was discovered that includes CDM (Ced-5, DOCK180, Myoblast city) proteins(More)
Recently, we have shown that membrane type 1 matrix metalloproteinase (MT1-MMP) exhibits integrin convertase activity. Similar to furin-like proprotein convertases, MT1-MMP directly processes a single chain precursor of alpha(v) integrin subunit (pro-alpha(v)) into the heavy and light alpha-chains connected by a disulfide bridge. To evaluate functionality(More)