Learn More
Damage to the auditory system following high-level sound exposure reduces afferent input. Homeostatic mechanisms appear to compensate for the loss. Overcompensation may produce the sensation of sound without an objective physical correlate, i.e., tinnitus. Several potential compensatory neural processes have been identified, such as increased spontaneous(More)
Chronic tinnitus has no broadly effective treatment. Identification of specific markers for tinnitus should facilitate the development of effective therapeutics. Recently it was shown that glutamatergic blockade in the cerebellar paraflocculus, using an antagonist cocktail was successful in reducing chronic tinnitus. The present experiment examined the(More)
We have reported recently that enrichment of high-density lipoprotein (HDL) with phosphatidylcholine (PC) liposomes is effective in solubilizing cholesterol from isolated human atherosclerotic plaques. In the present study, we investigated the in vivo effect of enrichment of HDL with PC on regression of diet-induced atherosclerosis in rabbits. As part of(More)
Non-destructive monitoring of tissue-engineered cartilage growth is needed to optimize growth conditions, but extracting quantitative biomarkers of extracellular matrix development remains a technical challenge. MRI provides a non-invasive way to obtain a three dimensional map of growing tissue where the image contrast is based on tissue water relaxation(More)
INTRODUCTION: Tinnitus is the phantom perception of sound in the absence of any external auditory stimulation. Chronic tinnitus is experienced by an estimated 30 million adults in the United States. One in every 200 adults is disabled by their tinnitus with significantly impaired quality of life. Despite decades of research on humans and animals, current(More)
Noninvasive imaging procedures will be important for stem cell therapy for muscular dystrophy (MD). Mesoangioblasts regenerate muscle in animal models of muscular dystrophy. In this study, superparamagnetic iron oxide nanoparticles were used to visualize mesoangioblasts in vivo with MRI. Mesoangioblasts incorporated superparamagnetic iron oxide without(More)
Manganese enhanced magnetic resonance imaging (MEMRI) is a method used primarily in basic science experiments to advance the understanding of information processing in central nervous system pathways. With this mechanistic approach, manganese (Mn(2+)) acts as a calcium surrogate, whereby voltage-gated calcium channels allow for activity driven entry of(More)
Methods to monitor transplanted stem cells in vivo are of great importance for potential therapeutic applications. Of particular interest are methods allowing noninvasive detection of stem cells throughout the body. Magnetic resonance imaging (MRI) is a tool that would allow detection of cells in nearly any tissue in the body and is already commonly used in(More)
The University of Illinois at Urbana-Champaign has a long and rich history of significant achievements in imaging, from the early developments of ultrasound imaging and its bioeffects, to the development of magnetic resonance imaging by the late Paul Lauterbur, who received the Nobel Prize in Medicine in 2003 for his work in establishing this technique.(More)