Boris Klementiev

Learn More
By means of i.c.v. administration of preaggregated oligomeric beta-amyloid (Abeta)25-35 peptide it was possible in rats to generate neuropathological signs related to those of early stages of Alzheimer's disease (AD). Abeta25-35-administration induced the deposition of endogenously produced amyloid protein. Furthermore, quantitative immunohistochemistry(More)
The neural cell adhesion molecule (NCAM) belongs to the immunoglobulin (Ig) superfamily and is composed extracellularly of five Ig-like and two fibronectin type III (F3) modules. It plays a pivotal role in neuronal development and synaptic plasticity. NCAM signals via a direct interaction with the fibroblast growth factor receptor (FGFR). A 15-amino-acid(More)
There is a major unmet need for development of innovative strategies for neuroprotection against ischemic brain injury. Here we show that FGL, a neural cell adhesion molecule (NCAM)-derived peptide binding to and inducing phosphorylation of the fibroblast growth factor receptor (FGFR), acts neuroprotectively after an ischemic insult both in vitro and in(More)
Interleukin 1 (IL-1) is implicated in neuroinflammation, an essential component of neurodegeneration. We evaluated the potential anti-inflammatory effect of a novel peptide antagonist of IL-1 signaling, Ilantide. We investigated the binding of Ilantide to IL-1 receptor type I (IL-1RI) using surface plasmon resonance, the inhibition of Il-1β-induced(More)
The fibroblast growth factor receptor (FGFR) plays a vital role in the development of the nervous system regulating a multitude of cellular processes. One of the interaction partners of the FGFR is the neural cell adhesion molecule (NCAM), which is known to play an important role in neuronal development, regeneration and synaptic plasticity. Thus,(More)
The neural cell adhesion molecule, NCAM, not only plays an important role in neuronal migration, differentiation and formation of connections in the developing nervous system, but also in the condensation of the mesodermal mesenchyme of the limb bud. Therefore, NCAM may be regarded as a target molecule for preventive strategies aimed at minimizing the(More)
The neural cell adhesion molecule (NCAM) plays a pivotal role in neural development, regeneration, synaptic plasticity, and memory processes. P2 is a 12-amino-acid peptide derived from the second immunoglobulin-like (Ig) module of NCAM mediating cis-homophilic interactions between NCAM molecules present on the same cell. P2 is a potent NCAM agonist, capable(More)
The neural cell adhesion molecule (NCAM) plays a crucial role during development and regeneration of the nervous system, mediating neuronal differentiation, survival and plasticity. Moreover, NCAM regulates learning and memory. A peptide termed P2, corresponding to a 12-amino-acid sequence in the second immunoglobulin (Ig)-like module of NCAM, represents(More)
The participation of the nerve termini growth associated protein GAP-43 in neurite outgrowth and targeting is well documented. Commonly, besides GAP-43 itself, two big fragments devoid of four (GAP-43-2, IB-50) and of about 40 (GAP-43-3, B-60) N-terminal residues were co-isolated from brain. In adult brain, GAP-43 significantly prevails over the fragments.(More)
2-n-Pentyl-4-pentynoic acid (PE-4-yn-VPA) is a derivative of the antiepileptic and mood-stabilizing drug valproic acid (VPA). PE-4-yn-VPA exists as R- and S-enantiomers, the latter being more teratogenic. PE-4-yn-VPA also possesses antiepileptic, antiproliferative, and cell-differentiating properties. Moreover, the less teratogenic enantiomer,(More)