Learn More
Multistability, the capacity to achieve multiple internal states in response to a single set of external inputs, is the defining characteristic of a switch. Biological switches are essential for the determination of cell fate in multicellular organisms, the regulation of cell-cycle oscillations during mitosis and the maintenance of epigenetic traits in(More)
Chemotactic bacteria rely on local concentration gradients to guide them towards the source of a nutrient. Such local cues pointing towards the location of the source are not always available at macroscopic scales because mixing in a flowing medium breaks up regions of high concentration into random and disconnected patches. Thus, animals sensing odours in(More)
Birdsong is characterized by the modulation of sound properties over a wide image of timescales. Understanding the mechanisms by which the brain organizes this complex temporal behaviour is a central motivation in the study of the song control and learning system. Here we present evidence that, in addition to central neural control, a further level of(More)
Locating the source of odor in a turbulent environment-a common behavior for living organisms-is nontrivial because of the random nature of mixing. Here we analyze the statistical physics aspects of the problem and propose an efficient strategy for olfactory search that can work in turbulent plumes. The algorithm combines the maximum likelihood inference of(More)
1. In vertebrate rods activation of the phototransduction cascade by light triggers changes in the concentrations of at least two diffusible intracellular second messengers (cGMP and Ca2+) whose actions depend on how far they spread from their site of production or entry. To address questions about their spatial spread, cell-attached patch current recording(More)
Regulation of cell growth and proliferation has a fundamental role in animal and plant development and in the progression of cancer. In the context of development, it is important to understand the mechanisms that coordinate growth and patterning of tissues. Imaginal discs, which are larval precursors of fly limbs and organs, have provided much of what we(More)
A basic challenge in systems biology is to understand the dynamical behavior of gene regulation networks. Current approaches aim at determining the network structure based on genomic-scale data. However, the network connectivity alone is not sufficient to define its dynamics; one needs to also specify the kinetic parameters for the regulation reactions.(More)
The dynamical behavior of a large one-dimensional system obeying the cubic complex Ginzburg-Landau equation is studied numerically as a function of parameters near a supercritical bifurcation. Two types of chaotic behavior can be distinguished beyond the Benjamin-Feir instability, a phase turbulence regime with a conserved phase winding number and no phase(More)
Identification of transcription factor binding sites within regulatory segments of genomic DNA is an important step toward understanding of the regulatory circuits that control expression of genes. Here, we describe a novel bioinformatics method that bases classification of potential binding sites explicitly on the estimate of sequence-specific binding(More)
Identifying the basic module of enzymatic amplification as an irreversible cycle of messenger activation/deactivation by a "push-pull" pair of opposing enzymes, we analyze it in terms of gain, bandwidth, noise, and power consumption. The enzymatic signal transduction cascade is viewed as an information channel, the design of which is governed by the(More)