Boris I. Khodorov

Learn More
1. The objective of this study was to clarify the relationships between loss of mitochondrial potential and the perturbation of neuronal Ca2+ homeostasis induced by a toxic glutamate challenge. Digital fluorescence imaging techniques were employed to monitor simultaneously changes in cytoplasmic Ca2+ concentration ([Ca2+]i) and mitochondrial potential(More)
Delayed neuronal death following prolonged (10-15 min) stimulation of Glu receptors is known to depend on sustained elevation of cytosolic Ca(2+) concentration ([Ca(2+)](i)) which may persist far beyond the termination of Glu exposure. Mitochondrial depolarization (MD) plays a central role in this Ca(2+) deregulation: it inhibits the uniporter-mediated(More)
The purpose of our work was to study the relationship between glutamate (GLU)-induced mitochondrial depolarization and deterioration of neuronal Ca2+ homeostasis following a prolonged GLU challenge. The experiments were performed on cultured rat cerebellar granule cells using the fluorescent probes, rhodamine 123 and fura-2. All the cells, in which 100(More)
1. Exposure of hippocampal neurones to glutamate at toxic levels is associated with a profound collapse of mitochondrial potential and deregulation of calcium homeostasis. We have explored the contributions of reactive oxygen species (ROS) to these events, considered to represent the first steps in the progression to cell death. 2. Digital imaging(More)
ATP-sensitive single-channel potassium currents were studied in the membrane of rat ventricular myocytes. With an internal K+ concentration of [K+]i=140 mM, the outwardly directed currents saturated at ∼1.8 pA in the region of positive potentials independently of the external K+ concentration [K+]o, whereas an increase in [K+]i of up to 300 mM caused a(More)
The objective of this study was to evaluate the contribution of mitochondria to the clearance of Ca2+ loads induced by glutamate or 25 mM K+ pulses. The mitochondrial Ca2+ uptake was suppressed by application of 0.5 microM antimycin A or 3-5 mM NaCN in combination with 2.5 micrograms/ml oligomycin. In most cells such treatments both in the presence and in(More)
Using whole-cell patch-clamp techniques, we studied the interaction of open NMDA channels with tetraalkylammonium compounds: tetraethylammonium (TEA), tetrapropylammonium (TPA), tetrabutylammonium (TBA), and tetrapentylammonium (TPentA). Analysis of the blocking kinetics, concentration, and agonist dependencies using a set of kinetic models allowed us to(More)
1. Using whole-cell patch-clamp techniques, the mechanisms of NMDA channel blockade by amino-adamantane derivatives (AADs) memantine (3, 5-dimethyl-aminoadamantane, MEM) and amantadine (1-aminoadamantane, AM) have been studied in rat hippocampal neurons acutely isolated by the vibrodissociation method. A rapid concentration-jump technique was used to(More)
Sodium current and sodium channel intramembrane gating charge movement (Q) were monitored in voltage-clamped frog node of Ranvier after modification of all sodium channels by batrachotoxin (BTX). BTX caused an approximately threefold increase in steepness of the Q vs. voltage relationship and a 50-mV negative shift in its midpoint. The maximum amount of(More)