Learn More
Embryonic stem cells (ESCs) comprise at least two populations of cells with divergent states of pluripotency. Here, we show that epiblast stem cells (EpiSCs) also comprise two distinct cell populations that can be distinguished by the expression of a specific Oct4-GFP marker. These two subpopulations, Oct4-GFP positive and negative EpiSCs, are capable of(More)
Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by ectopic expression of four transcription factors (OCT4 (also called POU5F1), SOX2, c-Myc and KLF4). We previously reported that Oct4 alone is sufficient to reprogram directly adult mouse neural stem cells to iPS cells. Here we report the generation of one-factor(More)
The POU domain transcription factor OCT4 is a key regulator of pluripotency in the early mammalian embryo and is highly expressed in the inner cell mass of the blastocyst. Consistent with its essential role in maintaining pluripotency, Oct4 expression is rapidly downregulated during formation of the trophoblast lineage. To enhance our understanding of the(More)
Reprogramming of somatic cells achieved by combination of the four transcription factors Oct4, Sox2, Klf4, and c-Myc has very low efficiency. To increase the reprogramming efficiency and better understand the process, we sought to identify factors that mediate reprogramming with higher efficiency. We established an assay to screen nuclear fractions from(More)
Human embryonic stem cells (hESCs) can exit the self-renewal programme, through the action of signalling molecules, at any given time and differentiate along the three germ layer lineages. We have systematically investigated the specific roles of three signalling pathways, TGFβ/SMAD2, BMP/SMAD1, and FGF/ERK, in promoting the transition of hESCs into the(More)
Conrad et al. have generated human adult germline stem cells (haGSCs) from human testicular tissue, which they claim have similar pluripotent properties to human embryonic stem cells (hESCs). Here we investigate the pluripotency of haGSCs by using global gene-expression analysis based on their gene array data and comparing the expression of pluripotency(More)
BACKGROUND Despite their distinct origins, human embryonic stem (hES) and embryonic carcinoma (hEC) cells share a number of similarities such as surface antigen expression, growth characteristics, the ability to either self-renew or differentiate, and control of the undifferentiated state by the same core transcription factors. To obtain further insights(More)
Mouse epiblast stem cells (EpiSCs) are cultured with FGF2 and Activin A, like human embryonic stem cells (hESCs), but the action of the associated pathways in EpiSCs has not been well characterized. Here, we show that activation of the Activin pathway promotes self-renewal of EpiSCs via direct activation of Nanog, whereas inhibition of this pathway induces(More)
Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH⁻/⁻ mice) as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH⁻/⁻-induced pluripotent stem cells (iPS cells) as targets for gene correction in combination with the tetraploid embryo complementation(More)
BACKGROUND Experimentalists are overwhelmed by high-throughput data and there is an urgent need to condense information into simple hypotheses. For example, large amounts of microarray and deep sequencing data are becoming available, describing a variety of experimental conditions such as gene knockout and knockdown, the effect of interventions, and the(More)