Learn More
A micromachined electrostatically-suspended accelerometer (MESA) is a kind of three-axis inertial sensor based on fully-contactless electrostatic suspension of the proof mass (PM). It has the potential to offer broad bandwidth, high sensitivity, wide dynamic range and, thus, would be perfectly suited for land seismic acquisition. Previous experiments showed(More)
Large-scale core-sheath heterostructural SiC nanowires were facilely grown on the surface of carbon fibers using a one-step chemical vapor infiltration process. The as-synthesized SiC nanowires consist of single crystalline SiC cores with a diameter of ∼30 nm and polycrystalline SiC sheaths with an average thickness of ∼60 nm. The formation mechanisms of(More)
Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents(More)
A micromachined gyroscope in which a high-speed spinning rotor is suspended electrostatically in a vacuum cavity usually functions as a dual-axis angular rate sensor. An inherent coupling error between the two sensing axes exists owing to the angular motion of the spinning rotor being controlled by a torque-rebalance loop. In this paper, a decoupling(More)
Carbon nanofibers (CNFs) were grown around the carbon fiber architecture through a plasma enhanced chemical vapor deposition method to enhance the interface performance between CF architecture substrate and ZrC preceramic matrix. The synthesized 3D CF hierarchical architectures (CNFs-CF) are coated with zirconium carbide (ZrC) ceramic to enhance their(More)
  • 1