Bopanna I. Kalappa

Learn More
Tinnitus is an auditory percept without an environmental acoustic correlate. Contemporary tinnitus models hypothesize tinnitus to be a consequence of maladaptive plasticity-induced disturbance of excitation-inhibition homeostasis, possibly convergent on medial geniculate body (MGB, auditory thalamus) and related neuronal networks. The MGB is an obligate(More)
BACKGROUND The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs) in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1(More)
Vulnerability to noise-induced tinnitus is associated with increased spontaneous firing rate in dorsal cochlear nucleus principal neurons, fusiform cells. This hyperactivity is caused, at least in part, by decreased Kv7.2/3 (KCNQ2/3) potassium currents. However, the biophysical mechanisms underlying resilience to tinnitus, which is observed in noise-exposed(More)
The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of(More)
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central auditory system. Sensory thalamic structures show high levels of non-desensitizing extrasynaptic GABAA receptors (GABAARs) and a reduction in the redundancy of coded information. The present study compared the inhibitory potency of GABA acting at GABAARs between the(More)
PNU-120596 (1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)urea), a Type-II positive allosteric modulator of α(7) nicotinic acetylcholine receptors inhibits α(7) desensitization and robustly prolongs openings of α(7) channels. However, these effects may render α(7) channels more accessible to positively charged molecules and thus, more(More)
Synaptically released zinc inhibits baseline excitatory neurotransmission; however, the role of this neuromodulator on short-term plasticity during different levels of synaptic activity remains largely unknown. This lack of knowledge prevents our understanding of information transfer across zinc-releasing synapses, including 50% of excitatory synapses in(More)
[PDF] [Full Text] [Abstract] , August 30, 2013; 288 (35): 25053-25065. J. Biol. Chem. Gong Chen Xia Wu, Lanting Huang, Zheng Wu, Ce Zhang, Dongyun Jiang, Yuting Bai, Yun Wang and Homeostatic Competition between Phasic and Tonic Inhibition [PDF] [Full Text] [Abstract] , January 15, 2014; 111 (2): 229-238. J Neurophysiol Rui Cai, Bopanna I. Kalappa,(More)
BACKGROUND AND PURPOSE Activation of α7 nicotinic acetylcholine receptors (nAChRs) can be neuroprotective. However, endogenous choline and ACh have not been regarded as potent neuroprotective agents because physiological levels of choline/ACh do not produce neuroprotective levels of α7 activation. This limitation may be overcome by the use of type-II(More)
UNLABELLED The neuromodulator acetylcholine (ACh) is crucial for several cognitive functions, such as perception, attention, and learning and memory. Whereas, in most cases, the cellular circuits or the specific neurons via which ACh exerts its cognitive effects remain unknown, it is known that auditory cortex (AC) neurons projecting from layer 5B (L5B) to(More)