Boonserm Kijsirikul

Learn More
This paper focuses on developing a new framework of kernelizing Mahalanobis distance learners. The new KPCA trick framework offers several practical advantages over the classical kernel trick framework, e.g. no mathematical formulas and no reprogramming are required for a kernel implementation, a way to speed up an algorithm is provided with no extra work,(More)
This paper presents a method, called Adaptive Directed Acyclic Graph (ADAG), to extend Support Vector Machines (SVMs) for multiclass classification. The ADAG is based on the previous approach, the Decision Directed Acyclic Graph (DDAG), and is designed to remedy some weakness of the DDAG caused by its structure. We prove that the expected accuracy of the(More)
In support vector machines (SVM), the kernel functions which compute dot product in feature space significantly affect the performance of classifiers. Each kernel function is suitable for some tasks. A universal kernel is not possible, and the kernel must be chosen for the tasks under consideration by hand. In order to obtain a flexible kernel function, a(More)
In this paper, we propose an approach which can improve Inductive Logic Programming in multiclass problems. This approach is based on the idea that if a whole rule cannot be applied to an example, some partial matches of the rule can be useful. The most suitable class should be the class whose important partial matches cover the example more than those from(More)
The Support Vector Machine (SVM) has recently been introduced as a new pattern classification technique. It learns the boundary regions between samples belonging to two classes by mapping the input samples into a high dimensional space, and seeking a separating hyperplane in this space. This paper describes an application of SVMs to two phoneme recognition(More)