Learn More
Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take(More)
Replication intermediates from the yeast 2 microns plasmid and a recombinant plasmid containing the yeast autonomous replication sequence ARS1 have been analyzed by two-dimensional agarose gel electrophoresis. Plasmid replication proceeds through theta-shaped (Cairns) intermediates, terminating in multiply interlocked catenanes that are resolved during S(More)
During DNA replication one or both strands transiently become single stranded: first at the sites where initiation of DNA synthesis occurs (known as origins of replication) and subsequently on the lagging strands of replication forks as discontinuous Okazaki fragments are generated. We report a genome-wide analysis of single-stranded DNA (ssDNA) formation(More)
Analysis of a 131-kb segment of the left arm of yeast chromosome XIV beginning 157 kb from the telomere reveals four highly active origins of replication that initiate replication late in S phase. Previous work has shown that telomeres act as determinants for late origin activation. However, at least two of the chromosome XIV origins maintain their late(More)
BACKGROUND An understanding of the replication programme at the genome level will require the identification and characterization of origins of replication through large, contiguous regions of DNA. As a step toward this goal, origin efficiencies and replication times were determined for 10 ARSs spanning most of the 270 kilobase (kb) chromosome VI of(More)
During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by(More)
The temporal firing of replication origins throughout S phase in yeast depends on unknown determinants within the adjacent chromosomal environment. We demonstrate here that the state of histone acetylation of surrounding chromatin is an important regulator of temporal firing. Deletion of RPD3 histone deacetylase causes earlier origin firing and concurrent(More)
Replication of the approximately 200 tandem copies of yeast ribosomal RNA genes (rDNA) is known to be initiated within a subset of the repeats, with transcription continuing during the replication process. To examine replication fork movement in this gene cluster, we used a two-dimensional (2D) agarose gel electrophoresis procedure that distinguishes(More)
Temporal regulation of origin activation is widely thought to explain the pattern of early- and late-replicating domains in the Saccharomyces cerevisiae genome. Recently, single-molecule analysis of replication suggested that stochastic processes acting on origins with different probabilities of activation could generate the observed kinetics of replication(More)