Bong Jun Choi

Learn More
In this paper, we focus on power management for Delay/Disruption Tolerant Network (DTN), and propose two asynchronous clock-based sleep scheduling protocols that are distributed, adaptive, and energy efficient. Moreover, the sleep schedules can be constructed using simple systematic algorithms. We also discuss how the proposed protocols can be implemented(More)
In this paper, we propose a distributed asynchronous clock synchronization (DCS) protocol for Delay Tolerant Networks (DTNs). Different from existing clock synchronization protocols, the proposed DCS protocol can achieve global clock synchronization among mobile nodes within the network over asynchronous and intermittent connections with long delays.(More)
Decentralized inverter control is essential in distributed generation (DG) microgrids for low deployment/operation cost and high reliability. However, decentralized inverter control suffers from a limited system stability mainly because of the lack of communications among different inverters. In this paper, we investigate stability enhancement of the droop(More)
As essential building blocks of the future smart grid, microgrids can efficiently integrate various types of distributed generation (DG) units to supply the electric loads at the minimum cost based on the economic dispatch. In this paper, we propose a decentralized economic dispatch approach such that the optimal decision on power generation is made by each(More)
Navigating security and privacy challenges is one of the crucial requirements in the vehicle-to-grid (V2G) network. Since electric vehicles (EVs) need to provide their private information to aggregators/servers when charging/discharging at different charging stations, privacy of the vehicle owners can be compromised if the information is misused, traced, or(More)
In this paper, we study the optimal energy delivery problem from viewpoints of both the vehicle owner and aggregator, in load shaving services of a vehicle-to-grid (V2G) system. We formulate the optimization problem based on a general plug-in hybrid electric vehicle (PHEV)model, taking into account the randomness in vehicle mobility, time-of-use electricity(More)