Learn More
When describing robot motion with dynamic movement primitives (DMPs), goal (trajectory endpoint), shape and temporal scaling parameters are used. In reinforcement learning with DMPs, usually goals and temporal scaling parameters are predefined and only the weights for shaping a DMP are learned. Many tasks, however, exist where the best goal position is not(More)
The paper deals with kinematic control algorithms for on-line obstacle avoidance which allow a kinematically redundant manipulator to move in an un-structured environment without colliding with obstacles. The presented approach is based on the redundancy resolution at the velocity level. The primary task is determined by the end-effector trajectories and(More)
SUMMARY Null space velocity control is essential for achieving good behaviour of a redundant manipulator. Using the dynamically consistent pseudo-inverse, the task and null space motion and forces are decoupled. The paper presents a globally stable null space velocity controller and the gradient projection technique in conjunction with the dynamically(More)
— General-purpose autonomous robots need to have the ability to sequence and adapt the available sensorimotor knowledge, which is often given in the form of movement primitives. In order to solve a given task in situations that were not considered during the initial learning, it is necessary to adapt trajectories contained in the library of primitive(More)
SUMMARY This paper deals with the stability of null-space velocity control algorithms in extended operational space for redundant robots. We compare the performance of the control algorithm based on the minimal null-space projection and generalized-inverse-based projection into the Jacobian null-space. We show how the null-space projection affects the(More)
—The framework of dynamic movement primitives contains many favorable properties for the execution of robotic trajectories, such as indirect dependency on time, response to perturbations, and the ability to easily modulate the given trajectories, but the framework in its original form remains constrained to the kinematic aspect of the movement. In this(More)