Learn More
Resonant nanoelectromechanical systems (NEMS) are being actively investigated as sensitive mass detectors for applications such as chemical and biological sensing. We demonstrate that highly uniform arrays of nanomechanical resonators can be used to detect the binding of individual DNA molecules through resonant frequency shifts resulting from the added(More)
The nonlinear vibrational properties of a periodic micromechanical oscillator array have been measured. For sufficiently large amplitude of the driver, the optic mode of the di-element cantilever array becomes unstable and breaks up into excitations ranging over only a few cells. A driver-induced locking effect is observed to eternalize some of these(More)
Graphene's unparalleled strength, stiffness, and low mass per unit area make it an ideal material for nanomechanical resonators, but its relatively low quality factor is an important drawback that has been difficult to overcome. Here, we use a simple procedure to fabricate circular mechanical resonators of various diameters from graphene grown by chemical(More)
Intrinsic localized modes (ILMs) have been observed in micromechanical cantilever arrays, and their creation, locking, interaction, and relaxation dynamics in the presence of a driver have been studied. The micromechanical array is fabricated in a 300 nm thick silicon-nitride film on a silicon substrate, and consists of up to 248 cantilevers of two(More)
We have demonstrated a new electrospray ionization (ESI) device incorporating a tip made from a shaped thin film, bonded to a microfluidic channel, and interfaced to a time-of-flight mass spectrometer (TOFMS). A triangular-shaped thin polymer tip was formed by lithography and etching. A microfluidic channel, 20 microm wide and 10 microm deep, was embossed(More)
Label-free nanosensors can detect disease markers to provide point-of-care diagnosis that is low-cost, rapid, specific and sensitive. However, detecting these biomarkers in physiological fluid samples is difficult because of ionic screening. Here, we overcome this limitation by using distinct components within the sensor to perform purification and(More)
Nanomechanical resonators operating in vacuum are capable of detecting and weighing single biomolecules, but their application to the life sciences has been limited by viscous forces that impede their motion in liquid environments. A promising approach to avoid this problem, encapsulating the fluid within a mechanical resonator surrounded by vacuum, has not(More)
High-stress silicon nitride microresonators exhibit a remarkable room temperature Q factor that even exceeds that of single crystal silicon. A study of the temperature dependent variation of the Q of a 255 micromx255 micromx30 nm thick high-stress Si3N4 membrane reveals that the dissipation Q-1 decreases with lower temperatures and is approximately 3 orders(More)
Optical excitation plays an important role in the actuation of higher flexural and torsional modes of nanoelectromechanical oscillators. We show that optical fields are efficient for excitation, direct control, and measurement of in-plane motion of cantilever-type nanomechanical oscillators. As a model system, 200- and 250-nm-thick single-crystal silicon(More)
We present a new method for creating patches of fluid lipid bilayers with conjugated biotin and other compounds down to 1 microm resolution using a photolithographically patterned polymer lift-off technique. The patterns are realized as the polymer is mechanically peeled away in one contiguous piece in solution. The functionality of these surfaces is(More)