Bohdan Zelinka

Learn More
The signed edge domination number of a graph is an edge variant of the signed domination number. The closed neighbourhood NG[e] of an edge e in a graph G is the set consisting of e and of all edges having a common end vertex with e. Let f be a mapping of the edge set E(G) of G into the set {−1, 1}. If ∑ x∈N [e] f(x) 1 for each e ∈ E(G), then f is called a(More)
A subset D of the vertex set V (G) of a graph G is called point-set dominating, if for each subset S ⊆ V (G) − D there exists a vertex v ∈ D such that the subgraph of G induced by S ∪ {v} is connected. The maximum number of classes of a partition of V (G), all of whose classes are point-set dominating sets, is the point-set domatic number dp(G) of G. Its(More)
We deal with the graph operator Pow2 defined to be the complement of the square of a graph: Pow2(G) = Pow2(G). Motivated by one of many open problems formulated in [6] we look for graphs that are 2-periodic with respect to this operator. We describe a class G of bipartite graphs possessing the above mentioned property and prove that for any m,n ≥ 6, the(More)