Bogdan M. Leu

  • Citations Per Year
Learn More
Conformational flexibility is essential to the functional behavior of proteins. We use an effective force constant introduced by Zaccai, the resilience, to quantify this flexibility. Site-selective experimental and computational methods allow us to determine the resilience of heme protein active sites. The vibrational density of states of the heme Fe(More)
Phase competition underlies many remarkable and technologically important phenomena in transition metal oxides. Vanadium dioxide (VO2) exhibits a first-order metal-insulator transition (MIT) near room temperature, where conductivity is suppressed and the lattice changes from tetragonal to monoclinic on cooling. Ongoing attempts to explain this coupled(More)
Nuclear resonance vibrational spectroscopy (NRVS) and Raman spectroscopy on (54)Fe- and (57)Fe-enriched cytochrome c (cyt c) identify multiple bands involving vibrations of the heme Fe. Comparison with predictions from Fe isotope shifts reveals that 70% of the NRVS signal in the 300-450 cm(-1) frequency range corresponds to vibrations resolved in(More)
Flexibility is an important property of porphyrins, both natural and synthetic. We applied two synchrotron-based techniques, nuclear resonance vibrational spectroscopy and inelastic X-ray scattering, to quantify this property by measuring the bulk modulus of a protein active-site mimic [chloro(octaethylporphyrinato)iron(III)] and the resilience of the iron(More)
Magnetite exhibits unique electronic, magnetic, and structural properties in extreme conditions that are of great research interest. Previous studies have suggested a number of transitional models, although the nature of magnetite at high pressure remains elusive. We have studied a highly stoichiometric magnetite using inelastic X-ray scattering, X-ray(More)
We use quantitative experimental and theoretical approaches to characterize the vibrational dynamics of the Fe atom in porphyrins designed to model heme protein active sites. Nuclear resonance vibrational spectroscopy (NRVS) yields frequencies, amplitudes, and directions for 57Fe vibrations in a series of ferrous nitrosyl porphyrins, which provide a(More)
Phonons, the quantum mechanical representation of lattice vibrations, and their coupling to the electronic degrees of freedom are important for understanding thermal and electric properties of materials. For the first time, phonons have been measured using resonant inelastic x-ray scattering (RIXS) across the Cu K-edge in cupric oxide (CuO). Analyzing these(More)
We use nuclear resonance vibrational spectroscopy and computational predictions based on density functional theory (DFT) to explore the vibrational dynamics of (57)Fe in porphyrins that mimic the active sites of histidine-ligated heme proteins complexed with carbon monoxide. Nuclear resonance vibrational spectroscopy yields the complete vibrational spectrum(More)
We studied the collective excitations in an aqueous solution of lithium chloride over the temperature range of 270-205 K using neutron and x-ray Brillouin scattering. Both neutron and x-ray experiments revealed the presence of low- and high-frequency excitations, similar to the low- and high-frequency excitations in pure water. These two excitations were(More)