Learn More
We present the results of an experiment on extending the automatic method of Machine Translation evaluation BLUE with statistical weights for lexical items, such as tf.idf scores. We show that this extension gives additional information about evaluated texts; in particular it allows us to measure translation Adequacy, which, for statistical MT systems, is(More)
Named entities create serious problems for state-of-the-art commercial machine translation (MT) systems and often cause translation failures beyond the local context, affecting both the overall morphosyntactic well-formedness of sentences and word sense disambiguation in the source text. We report on the results of an experiment in which MT input was(More)
In this paper we compare two methods for translating into English from languages for which few MT resources have been developed (e.g. Ukrainian). The first method involves direct transfer using an MT system that is available for this language pair. The second method involves translation via a cognate language, which has more translation resources and one or(More)
Lack of sufficient parallel data for many languages and domains is currently one of the major obstacles to further advancement of automated translation. The ACCURAT project is addressing this issue by researching methods how to improve machine translation systems by using comparable corpora. In this paper we present tools and techniques developed in the(More)
Automatic methods for MT evaluation are often based on the assumption that MT quality is related to some kind of distance between the evaluated text and a professional human translation (e.g., an edit distance or the precision of matched N-grams). However, independently produced human translations are necessarily different, conveying the same content by(More)
The extraction of dictionaries from parallel text corpora is an established technique. However, as parallel corpora are a scarce resource, in recent years the extraction of dictionaries using comparable corpora has obtained increasing attention. In order to find a mapping between languages, almost all approaches suggested in the literature rely on a seed(More)
The use of n-gram metrics to evaluate the output of MT systems is widespread. Typically, they are used in system development, where an increase in the score is taken to represent an improvement in the output of the system. However, purchasers of MT systems or services are more concerned to know how well a score predicts the acceptability of the output to a(More)
We report on the results of an experiment aimed at enabling a machine translation system to select the appropriate strategy for dealing with words and phrases which have different translations depending on whether they are used as proper names or common nouns in the source text. We used the ANNIE named entity recognition system to identify named entities in(More)