Learn More
Generation and animation of realistic humans is an essential part of many projects in today's media industry. Especially, the games and special effects industry heavily depend on realistic human animation. In this work a unified model that describes both, human pose and body shape is introduced which allows us to accurately model muscle deformations not(More)
This paper proposes a method for capturing the performance of a human or an animal from a multi-view video sequence. Given an articulated template model and silhouettes from a multi-view image sequence, our approach recovers not only the movement of the skeleton, but also the possibly non-rigid temporal deformation of the 3D surface. While large scale(More)
Multiple people tracking consists in detecting the subjects at each frame and matching these detections to obtain full trajectories. In semi-crowded environments, pedestrians often occlude each other, making tracking a challenging task. Most tracking methods make the assumption that each pedestrian's motion is independent, thereby ignoring the complex and(More)
We present a new algorithm to jointly track multiple objects in multi-view images. While this has been typically addressed separately in the past, we tackle the problem as a single global optimization. We formulate this assignment problem as a min-cost problem by defining a graph structure that captures both temporal correlations between objects as well as(More)
In this article we present the integration of 3-D shape knowledge into a variational model for level set based image segmentation and tracking. Given a 3-D surface model of an object that is visible in the image of one or multiple cameras calibrated to the same world coordinate system, the object contour extracted by the segmentation method is applied to(More)
We present a novel method for multiple people tracking that leverages a generalized model for capturing interactions among individuals. At the core of our model lies a learned dictionary of interaction feature strings which capture relationships between the motions of targets. These feature strings, created from low-level image features, lead to a much(More)
In this paper a method for estimating a rigid skeleton, including skinning weights, skeleton connectivity, and joint positions, given a sparse set of example poses is presented. In contrast to other methods, we are able to simultaneously take examples of different subjects into account, which improves the robustness of the estimation. It is additionally(More)
In this work we present an approach for markerless motion capture (MoCap) of articulated objects, which are recorded with multiple unsynchronized moving cameras. Instead of using fixed (and expensive) hardware synchronized cameras, this approach allows us to track people with off-the-shelf handheld video cameras. To prepare a sequence for motion capture, we(More)
Local optimization and filtering have been widely applied to model-based 3D human motion capture. Global stochastic optimization has recently been proposed as promising alternative solution for tracking and initialization. In order to benefit from optimization and filtering, we introduce a multi-layer framework that combines stochastic optimization,(More)
In this paper, we propose the combined use of complementary concepts for 3D tracking: region fitting on one side and dense optical flow as well as tracked SIFT features on the other. Both concepts are chosen such that they can compensate for the shortcomings of each other. While tracking by the object region can prevent the accumulation of errors, optical(More)