Learn More
Diverse mechanisms have been proposed to explain biological pattern formation. Regardless of their specific molecular interactions, the majority of these mechanisms require morphogen gradients as the spatial cue, which are either predefined or generated as a part of the patterning process. However, using Escherichia coli programmed by a synthetic gene(More)
Gate3 Gate2 correlation between crustal properties and magma composition, there should be predictable, stepwise decreases in subduction-related elements such as barium across the axis as the rocks get younger. There will undoubtedly be further expeditions to sample rocks across the axis of the ELSC to test this hypothesis. Alongaxis changes in ‘zero-age’(More)
Scale invariance refers to the maintenance of a constant ratio of developing organ size to body size. Although common, its underlying mechanisms remain poorly understood. Here, we examined scaling in engineered Escherichia coli that can form self-organized core-ring patterns in colonies. We found that the ring width exhibits perfect scale invariance to the(More)
Much of our current knowledge of biology has been constructed based on population-average measurements. However, advances in single-cell analysis have demonstrated the omnipresent nature of cell-to-cell variability in any population. On one hand, tremendous efforts have been made to examine how such variability arises, how it is regulated by cellular(More)
Cellular processes are "noisy". In each cell, concentrations of molecules are subject to random fluctuations due to the small numbers of these molecules and to environmental perturbations. While noise varies with time, it is often measured at steady state, for example by flow cytometry. When interrogating aspects of a cellular network by such steady-state(More)
Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters) that generate a particular dynamic are often sub-optimal for others, defining a source of "tension" between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We(More)
Cellular processes are noisy due to the stochastic nature of biochemical reactions. As such, it is impossible to predict the exact quantity of a molecule or other attributes at the single-cell level. However, the distribution of a molecule over a population is often deterministic and is governed by the underlying regulatory networks relevant to the cellular(More)
  • 1