Bocheng Qiu

  • Citations Per Year
Learn More
This study developed a facile approach for preparing Ti(3+) self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti(3+) doping, some new intersurface bonds generation and graphene oxide reduction. Compared(More)
TiO2/graphene composites have been well studied as a solar light photocatalysts and electrode materials for lithium-ion batteries (LIBs). Recent reports have shown that ultralight 3D-graphene aerogels (GAs) can better adsorb organic pollutants and can provide multidimensional electron transport pathways, implying a significant potential application for(More)
Boron doped graphene nanosheets (B-GR) as a p-type semiconductor, provides much more edges to facilitate the loading of TiO2 nanoparticles (P25). Highly-dispersed P25/B-GR nanosheets with the size of 20-50 nm, are successfully synthesized by the vacuum activation and ultraphonic method. The nanosized morphology can decrease the local density of defects(More)
Chiral carbonaceous nanotubes (CNT) were successfully used in plasmon-free surface-enhanced Raman scattering (SERS) for the first time. Further modification of TiO2 nanocrystals on the chiral CNTs successfully realized the recycling of SERS substrate as chiral CNT/TiO2 hybrids. The high SERS sensitivity of methylene blue (MB) over the chiral CNT/TiO2(More)
A brown mesoporous TiO2-x /MCF composite with a high fluorine dopant concentration (8.01 at%) is synthesized by a vacuum activation method. It exhibits an excellent solar absorption and a record-breaking quantum yield (Φ = 46%) and a high photon-hydrogen energy conversion efficiency (η = 34%,) for solar photocatalytic H2 production, which are all higher(More)
The development of highly active, cost-effective, environmentally friendly and stable g-C3N4 based photocatalysts for H2 evolution is one of the most anticipated potential pathways for future hydrogen utilization. Herein, a facile gaseous bubble template approach was designed to prepare large-scale thin g-C3N4 nanosheets (g-C3N4 NSs) using melamine and(More)
The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe(3+)/Fe(2+) and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites(More)
N-doped mesoporous carbon-capped MoO2 nanobelts (designated as MoO2 @NC) were synthesized and applied to lithium-ion storage. Owing to the stable core-shell structural framework and conductive mesoporous carbon matrix, the as-prepared MoO2 @NC shows a high specific capacity of around 700 mA h g-1 at a current of 0.5 A g-1 , excellent cycling stability up to(More)
CdxZn1-xSe/CoP composites have been well studied as effervescent photocatalysts for H2 evolution. These composites are highly efficient at 45.1 mmol h-1 g-1 and have a high quantum yield of 11.8% at ∼520 nm. The tunable energy band of CdxZn1-xSe facilitates photo-electrons transferring to CoP via chemical bonds between components. Advances in CdxZn1-xSe/CoP(More)
Hollow structures with an efficient light harvesting and tunable interior component offer great advantages for constructing a Z-scheme system. Controlled design of hollow cobalt sulfide (Co9 S8 ) cubes embedded with cadmium sulfide quantum dots (QDs) is described, using hollow Co(OH)2 as the template and a one-pot hydrothermal strategy. The hollow CdS/Co9(More)
  • 1