Bobby R. Scott

Learn More
Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists(More)
The death of Alexander Litvinenko on 23 November 2006 has brought into focus scientific judgements concerning the radiotoxicity of polonium-210 ((210)Po). This paper does not consider the specific radiological circumstances surrounding the tragic death of Mr Litvinenko; rather, it provides an evaluation of published human and animal data and models(More)
Humans are continuously exposed to low-level ionizing radiation from natural sources. However, harsher radiation environments persisted during our planet's early years and mammals survived via an evolutionary gift--a system of radiation-induced natural protective measures (adaptive protection). This system includes antioxidants, DNA repair, apoptosis of(More)
An adaptive response is a response to a stress such as radiation exposure that results in a lower than expected biological response. We describe an adaptive response to X radiation in mouse prostate using the pKZ1 chromosomal inversion assay. pKZ1 mice were treated with a priming dose of 0.001, 0.01, 1 or 10 mGy followed 4 h later by a 1000-mGy challenge(More)
For radiation-related cancer risk evaluation, it is important to assess not only influences of individual risk factors but also their interactive effects (e.g., additive, multiplicative, etc.). Multivariate analysis methods adapted for interactive effects allow such assessments. We have used a multivariate analysis approach to investigate the pair-wise(More)
Understanding how cellular damage produced by high-linear energy transfer (LET) radiation interacts with that produced by low-LET is important both in radiation therapy and in evaluating risk. To study such interactions, rat lung epithelial cells (LEC) were grown on Mylar films and exposed to both X-rays and alpha-particles, separately or simultaneously.(More)
Despite decades of research in defining the health effects of low-dose (<100 mGy) ionizing photon radiation (LDR), the relationship between LDR and human cancer risk remains elusive. Because chemical carcinogens modify the tumor microenvironment, which is critical for cancer development, we investigated the role and mechanism of LDR in modulating the(More)
The linear nonthreshold (LNT) model plays a central role in low-dose radiation risk assessment for humans. With the LNT model, any radiation exposure is assumed to increase one's risk of cancer. Based on the LNT model, others have predicted tens of thousands of deaths related to environmental exposure to radioactive material from nuclear accidents (e.g.,(More)
  • Bobby R Scott
  • Dose-response : a publication of International…
  • 2011
The multicellular signaling model (MULTISIG1) was recently introduced to simulate the kinetics of repair of DNA double-strand breaks (DSBs) that were induced in confluent (non-dividing) cultured cells by a very low radiation dose where at most a single induced DSB would be expected in a given cell nucleus. The repair kinetics was modeled as representing(More)
  • B R Scott
  • Dose-response : a publication of International…
  • 2007
A low-dose protective apoptosis-mediated (PAM) process is discussed that appears to be turned on by low-dose gamma and X rays but not by low-dose alpha radiation. PAM is a bystander effect that involves cross-talk between genomically compromised [e.g., mutants, neoplastically transformed, micronucleated] cells and nongenomically compromised cells. A novel(More)