Learn More
Over 100 human genetic disorders result from mutations in glycosylation-related genes. In 2013, a new glycosylation disorder was reported every 17 days. This trend will probably continue given that at least 2% of the human genome encodes glycan-biosynthesis and -recognition proteins. Established biosynthetic pathways provide many candidate genes, but(More)
BACKGROUND Congenital disorders of glycosylation are genetic syndromes that result in impaired glycoprotein production. We evaluated patients who had a novel recessive disorder of glycosylation, with a range of clinical manifestations that included hepatopathy, bifid uvula, malignant hyperthermia, hypogonadotropic hypogonadism, growth retardation,(More)
This review presents principles of glycosylation, describes the relevant glycosylation pathways and their related disorders, and highlights some of the neurological aspects and issues that continue to challenge researchers. More than 100 rare human genetic disorders that result from deficiencies in the different glycosylation pathways are known today. Most(More)
The breast cancer suppressor protein, BRCA1 plays an important role in mediating cell cycle arrest, apoptosis and DNA responses to DNA damage signals. In this study, we show that BRCA1 level is downregulated during UV-induced apoptosis by caspase-3 mediated cleavage. Cleavage of BRCA1 by caspase-3 produced a fragment that contained the C-terminal of the(More)
N-linked glycosylation is the most frequent modification of secreted and membrane-bound proteins in eukaryotic cells, disruption of which is the basis of the congenital disorders of glycosylation (CDGs). We describe a new type of CDG caused by mutations in the steroid 5alpha-reductase type 3 (SRD5A3) gene. Patients have mental retardation and ophthalmologic(More)
Biochemical analysis and whole-exome sequencing identified mutations in the Golgi-localized UDP-galactose transporter SLC35A2 that define an undiagnosed X-linked congenital disorder of glycosylation (CDG) in three unrelated families. Each mutation reduced UDP-galactose transport, leading to galactose-deficient glycoproteins. Two affected males were somatic(More)
We describe a new Type II congenital disorder of glycosylation (CDG-II) caused by mutations in the conserved oligomeric Golgi (COG) complex gene, COG8. The patient has severe psychomotor retardation, seizures, failure to thrive and intolerance to wheat and dairy products. Analysis of serum transferrin and total serum N-glycans showed normal addition of one(More)
PURPOSE Congenital disorders of glycosylation are a heterogeneous group of disorders caused by deficient glycosylation, primarily affecting the N-linked pathway. It is estimated that more than 40% of congenital disorders of glycosylation patients lack a confirmatory molecular diagnosis. The purpose of this study was to improve molecular diagnosis for(More)
We describe two unreported types of congenital disorders of glycosylation (CDG) which are caused by mutations in different isoforms of the catalytic subunit of the oligosaccharyltransferase (OST). Each isoform is encoded by a different gene (STT3A or STT3B), resides in a different OST complex and has distinct donor and acceptor substrate specificities with(More)
Congenital disorders of glycosylation (CDG) are rare genetic disorders due to impaired glycosylation. The patients with subtypes CDG-Ia and CDG-Ib have mutations in the genes encoding phosphomannomutase 2 (PMM2) and phosphomannose isomerase (MPI or PMI), respectively. PMM2 (mannose 6-phosphate → mannose 1-phosphate) and MPI (mannose 6-phosphate ⇔ fructose(More)