Learn More
Universal logic gates for two quantum bits (qubits) form an essential ingredient of quantum computation. Dynamical gates have been proposed in the context of trapped ions; however, geometric phase gates (which change only the phase of the physical qubits) offer potential practical advantages because they have higher intrinsic resistance to certain small(More)
We demonstrate experimentally a robust quantum memory using a magnetic-field-independent hyperfine transition in 9Be+ atomic ion qubits at a magnetic field B approximately = 0.01194 T. We observe that the single physical qubit memory coherence time is greater than 10 s, an improvement of approximately 5 orders of magnitude from previous experiments with(More)
Experiments directed towards the development of a quantum computer based on trapped atomic ions are described briefly. We discuss the implementation of single-qubit operations and gates between qubits. A geometric phase gate between two ion qubits is described. Limitations of the trapped-ion method such as those caused by Stark shifts and spontaneous(More)
The coherence of a hyperfine-state superposition of a trapped 9Be+ ion in the presence of off-resonant light is studied experimentally. It is shown that Rayleigh elastic scattering of photons that does not change state populations also does not affect coherence. We observe coherence times that exceed the average scattering time of 19 photons which is(More)
PURPOSE To determine whether aqueous humor promotes cell death in cells involved in inflammatory responses. METHODS Multiple immune cell types, most characteristically involved in inflammatory responses, were incubated for 24, 48, and 72 hours in the presence or absence of 50% aqueous humor. Promotion of cell death was assayed by staining for an early(More)
We describe a stepwise-development thin-layer-chromatographic technique for separating phosphatidylglycerol and phosphatidylinositol in samples of amniotic fluid. Plates are prepared from silica gel G slurried in a 50 g/L ammonium sulfate solution. Phospholipid phosphorus determination is not needed. Phospholipid phosphorus determination is not needed.(More)
We show how an experimentally realized set of operations on a single trapped ion is sufficient to simulate a wide class of Hamiltonians of a spin-1/2 particle in an external potential. This system is also able to simulate other physical dynamics. As a demonstration, we simulate the action of two nth order nonlinear optical beam splitters comprising an(More)
We experimentally probe the properties of the disordered Bose-Hubbard model using an atomic Bose-Einstein condensate trapped in a 3D disordered optical lattice. Controllable disorder is introduced using a fine-grained optical speckle field with features comparable in size to the lattice spacing along every lattice direction. A precision measurement of the(More)