Learn More
Nonnegative matrix factorization (NMF) is a powerful matrix decomposition technique that approximates a nonnegative matrix by the product of two low-rank nonnegative matrix factors. It has been widely applied to signal processing, computer vision, and data mining. Traditional NMF solvers include the multiplicative update rule (MUR), the projected gradient(More)
MOTIVATION Identification of functional modules in protein interaction networks is a first step in understanding the organization and dynamics of cell functions. To ensure that the identified modules are biologically meaningful, network-partitioning algorithms should take into account not only topological features but also functional relationships, and(More)
Fungi in the genus Malassezia are ubiquitous skin residents of humans and other warm-blooded animals. Malassezia are involved in disorders including dandruff and seborrheic dermatitis, which together affect >50% of humans. Despite the importance of Malassezia in common skin diseases, remarkably little is known at the molecular level. We describe the genome,(More)
Detecting hedges and their scope in natural language text is very important for information inference. In this paper, we present a system based on a cascade method for the CoNLL-2010 shared task. The system composes of two components: one for detecting hedges and another one for detecting their scope. For detecting hedges, we build a cascade subsystem.(More)
A comprehensive set of experiments was conducted with a continuous EDA on 25 test problems provided in the real-parameter optimization special session. It is expected that the results presented here could be used to gain some deeper understanding of the performance of the EDA as well as facilitate the comparison across different algorithms.
Nonnegative matrix factorization (NMF) has become a popular data-representation method and has been widely used in image processing and pattern-recognition problems. This is because the learned bases can be interpreted as a natural parts-based representation of data and this interpretation is consistent with the psychological intuition of combining parts to(More)
 Abstract—Polar codes, as the first provable capacity-achieving error-correcting codes, have received much attention in recent years. However, the decoding performance of polar codes with traditional successive-cancellation (SC) algorithm cannot match that of the low-density parity-check (LDPC) or turbo codes. Because SC list (SCL) decoding algorithm can(More)
Nonnegative matrix factorization (NMF) has become a popular dimension-reduction method and has been widely applied to image processing and pattern recognition problems. However, conventional NMF learning methods require the entire dataset to reside in the memory and thus cannot be applied to large-scale or streaming datasets. In this paper, we propose an(More)
Given a set of sparsely distributed sensors in the Euclidean plane, a mobile robot is required to visit all sensors to download the data and finally return to its base. The effective range of each sensor is specified by a disk, and the robot must at least reach the boundary to start communication. The primary goal of optimization in this scenario is to(More)