Learn More
Invariant NKT cells (iNKT cells) are a unique subset of T lymphocytes that rapidly carry out effector functions. In this study, we report that a majority of sterile house dust extracts (HDEs) tested contained antigens capable of activating mouse and human iNKT cells. HDEs had adjuvant-like properties in an ovalbumin (OVA)-induced asthma model, which were(More)
Natural killer T cells (NKT cells) recognize glycolipid antigens presented by CD1d. These cells express an evolutionarily conserved, invariant T cell antigen receptor (TCR), but the forces that drive TCR conservation have remained uncertain. Here we show that NKT cells recognized diacylglycerol-containing glycolipids from Streptococcus pneumoniae, the(More)
Invariant natural killer T (iNKT) cells are an evolutionary conserved T cell population characterized by features of both the innate and adaptive immune response. Studies have shown that iNKT cells are required for protective responses to Gram-positive pathogens such as Streptococcus pneumoniae, and that these cells recognize bacterial diacylglycerol(More)
The short cytoplasmic tail of mouse CD1d (mCD1d) is required for its endosomal localization, for the presentation of some glycolipid Ags, and for the development of Valpha14i NKT cells. This tail has a four-amino acid Tyr-containing motif, Tyr-Gln-Asp-Ile (YQDI), similar to those sequences known to be important for the interaction with adaptor protein(More)
NKT cells with an invariant Ag receptor (iNKT cells) represent a highly conserved and unique subset of T lymphocytes having properties of innate and adaptive immune cells. They have been reported to regulate a variety of immune responses, including the response to cancers and the development of autoimmunity. The development and activation of iNKT cells is(More)
Sulfatide-reactive CD1d-restricted natural killer T (NKT) lymphocytes belong to the type II NKT cell subset with diverse TCRs, and have been found to regulate experimental auto-immune encephalomyelitis, tumor immunity, and experimental hepatitis in murine models. NKT cells can be activated by self-lipids presented by CD1d, manifested as autoreactivity. The(More)
Mouse natural killer T (NKT) cells expressing an invariant T cell antigen receptor (TCR) recognize glycosphingolipids (GSLs) from Sphingomonas bacteria. The synthetic antigens previously tested, however, were designed to closely resemble the potent synthetic agonist alpha-galactosyl ceramide (alphaGalCer), which contains a monosaccharide and a C18:0(More)
Natural killer T (NKT) cells are a T cell subpopulation that were named originally based on coexpression of receptors found on natural killer (NK) cells, cells of the innate immune system, and by T lymphocytes. The maturation and activation of NKT cells requires presentation of glycolipid antigens by CD1d, a cell surface protein distantly related to the(More)
Autophagy regulates cell differentiation, proliferation, and survival in multiple cell types, including cells of the immune system. In this study, we examined the effects of a disruption of autophagy on the differentiation of invariant NKT (iNKT) cells. Using mice with a T lymphocyte-specific deletion of Atg5 or Atg7, two members of the macroautophagic(More)
BACKGROUND Integrated 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is widely performed for staging solitary pulmonary nodules (SPNs). However, the diagnostic efficacy of SPNs based on PET/CT is not optimal. Here, we propose a method of detection based on PET/CT that can differentiate malignant and benign SPNs with(More)