Learn More
Correct positioning of the division septum in Escherichia coli depends on the coordinated action of the MinC, MinD and MinE proteins. Topological specificity is conferred on the MinCD division inhibitor by MinE, which counters MinCD activity only in the vicinity of the preferred midcell division site. Here we report the structure of the homodimeric(More)
Contributions of fulvic-humic acids (FA/HA) and humin (HM) to sorption of phenanthrene (PHE) and pyrene (PYR) in a soil were differentiated using a humic separation procedure after multi-concentration sorption experiments. It was found that the amount of solutes in FA/HA did not change significantly after 48 h, while that in HM increased continuously and(More)
Antibiotics pose environmental risks, but their adsorption mechanisms are still unclear. Identifying the contributions of different mechanisms is vital in predicting antibiotic environmental behavior and consequently understanding their environmental risks. This study used functionalized carbon nanotubes (CNTs), namely hydroxylized (MH), carboxylized (MC),(More)
We investigated the adsorption-desorption by multiwalled carbon nanotubes (MWCNTs) of two pharmaceuticals, oxytetracycline (OTC) and carbamazepine (CBZ). The pharmaceuticals demonstrated relatively fast sorption kinetics on MWCNTs. All adsorption isotherms were nonlinear and fit the Polanyi-Manes model (PMM). The single point adsorption coefficient (K)(More)
The environmental risks of antibiotics have attracted lots of research attention, but their environmental behavior is not clear yet. Functionalized carbon nanotubes (CNTs) were used as model adsorbents and sulfamethoxazole (SMX) was used as a model antibiotic to investigate the effect of both cations (Ca(2+), Cs(+)) and anions (phosphate) on antibiotics(More)
XRCC1 functions in the repair of single-strand DNA breaks in mammalian cells and forms a repair complex with beta-Pol, ligase III and PARP. Here we describe the NMR solution structure of the XRCC1 N-terminal domain (XRCC1 NTD). The structural core is a beta-sandwich with beta-strands connected by loops, three helices and two short two-stranded beta-sheets(More)
The environmental risks of wide application and occurrence of antibiotics have attracted great concern but their environmental behaviors are still unclear. The fast development of nanotechnology also arise environmental concerns, one of which is that the discharge of nanomaterials into the environment may alter the environmental behavior and risks of(More)
The crystal structure of a 16-mer, the longest known RNA duplex, has been determined at 2.5 A resolution. The hexadecamer r(GCAGACUUAAAUCUGC) contains isolated C.A/A.C mismatches with two hydrogen bonds. The two hydrogen bonds in the mismatches suggests that N1 of A is protonated even though the crystallization was done at neutral pH. Therefore, the C.A(More)
G.A mispairs are one of the most common noncanonical structural motifs of RNA. The 1.9 A resolution crystal structure of the RNA 16-mer r(GCAGAGUUAAAUCUGC)2 has been determined with two isolated or nonadjacent G.A mispairs. The molecule crystallizes with one duplex in the asymmetric unit in space group R3 and unit cell dimensions a = b = c = 49.24 A and(More)
Interactions between hydrophobic organic chemicals (HOCs) and dissolved organic matter (DOM) are of environmental significance due to their influence on mobility and bioavailability of HOCs. The linear dissolution concept has been widely used to describe the interactions between HOCs and DOM, but it may not be correct. To date there is no systematic(More)