Bożena Gabryel

Learn More
Recently, it has been reported that metformin may attenuate inflammation and directly act on the central nervous system. Using the HPLC method, in Wistar rats, we assessed the changes in metformin concentrations in various brain regions (pituitary gland, olfactory bulb, hypothalamus, cerebellum, hippocampus, striatum, frontal cortex), cerebrospinal fluid(More)
The cytokines IL-1beta and IL-2 are released from activated glial cells in the central nervous system and they are able to enhance catecholaminergic neurotransmission. There is no data concerning influence of antipsychotics on glial cell activity. Antipsychotics reaching the brain act not only on neurons but probably also on glial cells. The aim of this(More)
In this study, we investigated the protective effect of ebselen, a seleno-organic compound with antioxidant activity, towards astrocyte degeneration caused by exposure to simulated in vitro ischemic conditions and simultaneous depletion of glutathione (GSH). Depletion of GSH was induced by 24 h pretreatment with L-buthionine-(S,R)-sulfoximine (BSO). In this(More)
In the present study, we investigated whether the protective effect of FK506 and cyclosporin A (CsA) against in vitro ischemic injury of astrocytes might be mediated through attenuation of cytosolic isoform of phospholipase A(2) (cPLA(2)) expression and activity as well as inhibition of arachidonic acid (AA) release. On the 21st day in vitro, cultures of(More)
The aim of the present study was to establish whether aniracetam is capable of protecting cultured rat astrocytes against ischemic injury. Treatment of the cultures with aniracetam (1, 10 and 100 mM) during 24 h ischemia simulated in vitro significantly decreased the number of apoptotic cells. The antiapoptotic effects of the drug were confirmed by the(More)
The aim of the present study was to establish whether piracetam (2-pyrrolidon-N-acetamide; PIR) and vinpocetine (a vasoactive vinca alkaloid; VINP) are capable of protecting astrocytes against hypoxic injury. Using the model of astrocyte cell culture we observed the cells treated with PIR and VINP during and after in vitro simulated hypoxia. Cell viability(More)
The results of recent studies suggest that metformin, in addition to its efficacy in treating type 2 diabetes, may also have therapeutic potential for the treatment of neuroinflammatory diseases in which reactive microglia play an essential role. However, the molecular mechanisms by which metformin exerts its anti-inflammatory effects remain largely(More)
Although many attempts have been made, stroke treatment options are still extremely limited and brain ischemia remains the leading cause of death and disability worldwide. Two major strategies for ischemic stroke, reperfusion and neuroprotection, are currently being evaluated. Autophagy is a bulk protein degradation system that is involved in multiple(More)
Recent evidence suggests that metformin shows beneficial effects in experimental models of neuroinflammatory diseases. The aim of the present study was to determine the effect of metformin on phagocytosis and acidification of lysosomal/endosomal compartments in rat primary microglia in the presence of lipopolysaccharide (LPS) and/or beta-peptides (25–35),(More)