Blanca Garciadeblás

Learn More
Na+ uptake in the roots of K+-starved seedlings of barley, rice, and wheat was found to exhibit fast rate, low Km, and high sensitivity to K+. Sunflower plants responded in a similar manner but the uptake was not K+ sensitive. Ba2+ inhibited Na+ uptake, but not K+ uptake in rice roots. This demonstrated that Na+ and K+ uptake are mediated by different(More)
Plants take up large amounts of K(+) from the soil solution and distribute it to the cells of all organs, where it fulfills important physiological functions. Transport of K(+) from the soil solution to its final destination is mediated by channels and transporters. To better understand K(+) movements in plants, we intended to characterize the function of(More)
The salt tolerance of rice (Oryza sativa) correlates with the ability to exclude Na+ from the shoot and to maintain a low cellular Na+/K+ ratio. We have identified a rice plasma membrane Na+/H+ exchanger that, on the basis of genetic and biochemical criteria, is the functional homolog of the Arabidopsis (Arabidopsis thaliana) salt overly sensitive 1 (SOS1)(More)
A cDNA library in a yeast expression vector was prepared from roots of Arabidopsis exposed to salt and was used to select Li(+)-tolerant yeast transformants. The cDNA SAL1 isolated from one of these transformants encodes a polypeptide of 353 amino acid residues. This protein is homologous to the HAL2 and CysQ phosphatases of yeast and Escherichia coli,(More)
The ENA2 gene encoding a P-type ATPase involved in Na+ and Li+ effluxes in Saccharomyces cerevisiae has been isolated. The putative protein encoded by ENA2 differs only in thirteen amino acids from the protein encoded by ENA1/PMR2. However, ENA2 has a very low level of expression and for this reason did not confer significant Li+ tolerance on a Li+(More)
Potassium is the most abundant cation in cells. Therefore, plant-associated fungi and intracellular parasites are permanently or circumstantially exposed to high K(+) and must avoid excessive K(+) accumulation activating K(+) efflux systems. Because high K(+) and high pH are compatible in natural environments, free-living organisms cannot keep a permanent(More)
The gene ENA1 was cloned by its ability to complement the Li+ sensitivity of a low Li(+)-efflux strain. The nucleotide sequence of the cloned DNA fragment showed that there are two almost identical genes in tandem, and predicts that they encode P-ATPases. Disruption of both genes originated a strain defective in Na+ and Li+ effluxes, and sensitive to Na+,(More)
Fungi have an absolute requirement for K+, but K+ may be partially replaced by Na+. Na+ uptake in Ustilago maydis and Pichia sorbitophila was found to exhibit a fast rate, low Km, and apparent independence of the membrane potential. Searches of sequences with similarity to P-type ATPases in databases allowed us to identify three genes in these species,(More)
Using PCR, reverse transcription-PCR (RT-PCR) and colony hybridization in a genomic library, we isolated six genes which encode type II P-type ATPases in Neurospora crassa. The six full-length cDNAs were cloned in a yeast expression vector and transformed into Saccharomyces cerevisiae null Ca2+- or Na+-ATPase mutants. Three cDNAs suppressed the defect of(More)
We have investigated the presence of K(+)-transporting ATPases that belong to the phylogenetic group of animal Na(+),K(+)-ATPases in the Pythium aphanidermatum Stramenopile oomycete, the Porphyra yezoensis red alga, and the Udotea petiolata green alga, by molecular cloning and expression in heterologous systems. PCR amplification and search in EST databases(More)