Blake Mertz

Learn More
Rhodopsin, the mammalian dim-light receptor, is one of the best-characterized G-protein-coupled receptors, a pharmaceutically important class of membrane proteins that has garnered a great deal of attention because of the recent availability of structural information. Yet the mechanism of rhodopsin activation is not fully understood. Here, we use(More)
We have performed quantum mechanical calculations for retinal model compounds to establish the rotational energy barriers for the C5-, C9-, and C13-methyl groups known to play an essential role in rhodopsin activation. Intraretinal steric interactions as well as electronic effects lower the rotational barriers of both the C9- and C13-methyl groups,(More)
Rhodopsin has served as the primary model for studying G protein-coupled receptors (GPCRs)-the largest group in the human genome, and consequently a primary target for pharmaceutical development. Understanding the functions and activation mechanisms of GPCRs has proven to be extraordinarily difficult, as they are part of a complex signaling cascade and(More)
Focal adhesion kinase (FAK) is a protein tyrosine kinase that is ubiquitously expressed, recruited to focal adhesions, and engages in a variety of cellular signaling pathways. Diverse cellular responses, such as cell migration, proliferation, and survival, are regulated by FAK. Prior to activation, FAK adopts an autoinhibited conformation in which the FERM(More)
The development of molecular-scale junctions utilizing biomolecules is a challenging field that requires intimate knowledge of the relationship between molecular structure and conductance characteristics. One of the key parameters to understanding conductance efficiency is the charge mobility, which strongly influences the response time of electronic(More)
Rhodopsin is a well-characterized structural model of a G protein-coupled receptor. Photoisomerization of the covalently bound retinal triggers activation. Surprisingly, the x-ray crystal structure of the active Meta-II state has a 180° rotation about the long-axis of the retinal polyene chain. Unbiased microsecond-timescale all-atom molecular dynamics(More)
Rhodopsin, the mammalian dim light photoreceptor, is the canonical model for G protein-coupled receptors. Activation of rhodopsin occurs when the covalently bound inverse agonist, retinal, absorbs a photon and undergoes an 11-cis to all-trans isomerization. Two critical components of the visual cycle occur with the (1) hydrolytic release of all-trans(More)
Proteorhodopsin, a member of the microbial rhodopsin family, is a seven-transmembrane α-helical protein that functions as a light-driven proton pump. Understanding the proton-pumping mechanism of proteorhodopsin requires intimate knowledge of the proton transfer pathway via complex hydrogen-bonding networks formed by amino acid residues and internal water(More)
Systematic N-methylated derivatives of the melanocortin receptor ligand, SHU9119, lead to multiple binding and functional selectivity toward melanocortin receptors. However, the relationship between N-methylation-induced conformational changes in the peptide backbone and side chains and melanocortin receptor selectivity is still unknown. We conducted(More)
  • 1