Learn More
We recently showed that resistance exercise and ingestion of essential amino acids with carbohydrate (EAA+CHO) can independently stimulate mammalian target of rapamycin (mTOR) signaling and muscle protein synthesis in humans. Providing an EAA+CHO solution postexercise can further increase muscle protein synthesis. Therefore, we hypothesized that enhanced(More)
The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a(More)
Sarcopenia, skeletal muscle loss during aging, is associated with increased falls, fractures, morbidity, and loss of independence. MicroRNAs (miRNAs) are novel posttranscriptional regulators. The role of miRNAs in cell size regulation after an anabolic stimulus in human skeletal muscle is unknown. We hypothesized that aging would be associated with a(More)
BACKGROUND Sarcopenia, the loss of skeletal muscle mass during aging, increases the risk for falls and dependency. Resistance exercise (RE) training is an effective treatment to improve muscle mass and strength in older adults, but aging is associated with a smaller amount of training-induced hypertrophy. This may be due in part to an inability to stimulate(More)
Essential amino acids (EAA) stimulate skeletal muscle protein synthesis (MPS) in humans. Leucine may have a greater stimulatory effect on MPS than other EAA and/or decrease muscle protein breakdown (MPB). To determine the effect of 2 different leucine concentrations on muscle protein turnover and associated signaling, young men (n = 6) and women (n = 8)(More)
Muscle growth is associated with an activation of the mTOR signaling pathway and satellite cell regulators. The purpose of this study was to determine whether 17 selected genes associated with mTOR/muscle protein synthesis and the satellite cells/myogenic program are differentially expressed in young and older human skeletal muscle at rest and in response(More)
Amino acid transporters and mammalian target of rapamycin complex 1 (mTORC1) signaling are important contributors to muscle protein anabolism. Aging is associated with reduced mTORC1 signaling following resistance exercise, but the role of amino acid transporters is unknown. Young (n = 13; 28 ± 2 yr) and older (n = 13; 68 ± 2 yr) subjects performed a bout(More)
The Journal of Applied Physiology (ISSN-8750-7587) is published online twice monthly and bound once in print monthly (two volumes per year) by the American Physiological Society, 9650 Rockville Pike, Bethesda, MD 20814-3991 and online at www.jap.org (ISSN 1522-1601). Subscription Prices (postpaid). For institutional print and online pricing, please see The(More)
Bed rest induces significant loss of leg lean mass in older adults. Systemic and tissue inflammation also accelerates skeletal muscle loss, but it is unknown whether inflammation is associated to inactivity-induced muscle atrophy in healthy older adults. We determined if short-term bed rest increases toll-like receptor 4 (TLR4) signaling and(More)
Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that(More)