Learn More
A spiking neuron "computes" by transforming a complex dynamical input into a train of action potentials, or spikes. The computation performed by the neuron can be formulated as dimensional reduction, or feature detection, followed by a nonlinear decision function over the low-dimensional space. Generalizations of the reverse correlation technique with white(More)
In this paper we formulate a description of the computation performed by a neuron as a combination of dimensional reduction and nonlinearity. We implement this description for the Hodgkin-Huxley model, identify the most relevant dimensions and find the nonlinearity. A two dimensional description already captures a significant fraction of the information(More)
Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience on the device. For example, language models can improve speech recognition and text entry, and image models can automatically select good photos. However, this rich data is often privacy sensitive, large in quantity, or(More)
White noise methods are a powerful tool for characterizing the computation performed by neural systems. These methods allow one to identify the feature or features that a neural system extracts from a complex input and to determine how these features are combined to drive the system's spiking response. These methods have also been applied to characterize(More)
Personalization is a ubiquitous phenomenon in our daily online experience. While such technology is critical for helping us combat the overload of information we face, in many cases, we may not even realize that our results are being tailored to our personal tastes and preferences. Worse yet, when such a system makes a mistake, we have little recourse to(More)
  • 1