Blair K. Gage

  • Citations Per Year
Learn More
Islet transplantation represents a potential cure for type 1 diabetes; however, a lack of sufficient donor material limits its clinical use. To address the shortfall of islet availability, surrogate insulin-producing cells are sought. Studies suggest that human amniotic fluid (hAF) contains multipotent progenitor cells capable of differentiating to all(More)
Continued advances toward cell-based therapies for human disease generate a growing need for unbiased and label-free monitoring of cellular characteristics. We used Raman microspectroscopy to characterize four important stages in the 26-day directed differentiation of human embryonic stem cells (hESCs) to insulin-positive cells. The extent to which the(More)
Human embryonic stem cells (hESCs) have the ability to form cells derived from all three germ layers, and as such have received significant attention as a possible source for insulin-secreting pancreatic beta-cells for diabetes treatment. While considerable advances have been made in generating hESC-derived insulin-producing cells, to date in vitro-derived(More)
Diabetes is associated with the death and dysfunction of insulin-producing pancreatic β-cells. In other systems, Musashi genes regulate cell fate via Notch signaling, which we recently showed regulates β-cell survival. Here we show for the first time that human and mouse adult islet cells express mRNA and protein of both Musashi isoforms, as well(More)
The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed,(More)
Human embryonic stem cells (hESCs) are pluripotent and capable of generating new β-cells, but current in vitro differentiation protocols generally fail to produce mature, glucose-responsive, unihormonal β-cells. Instead, these methods tend to produce immature polyhormonal endocrine cells which mature in vivo into glucagon-positive α-cells. PAX4 is an(More)
Human embryonic stem cells (hESCs) can be differentiated into multiple cell types with great therapeutic potential. However, optimizing the often multi-week cultures to obtain sufficient differentiated cell yields has been in part limited by the high variability of even parallel hESC differentiation cultures. We describe the isolation and features of a(More)
Diabetes is a devastating disease that is ultimately caused by the malfunction or loss of insulin-producing pancreatic beta-cells. Drugs capable of inducing the development of new beta-cells or improving the function or survival of existing beta-cells could conceivably cure this disease. We report a novel high-throughput screening platform that exploits(More)
  • 1