Blair A. Lock

Learn More
CONTEXT Improving the function of prosthetic arms remains a challenge, because access to the neural-control information for the arm is lost during amputation. A surgical technique called targeted muscle reinnervation (TMR) transfers residual arm nerves to alternative muscle sites. After reinnervation, these target muscles produce electromyogram (EMG)(More)
BACKGROUND The function of current artificial arms is limited by inadequate control methods. We developed a technique that used nerve transfers to muscle to develop new electromyogram control signals and nerve transfers to skin, to provide a pathway for cutaneous sensory feedback to the missing hand. METHODS We did targeted reinnervation surgery on a(More)
Pattern recognition is a useful tool for deciphering movement intent from myoelectric signals. Recognition paradigms must adapt with the user in order to be clinically viable over time. Most existing paradigms are static, although two forms of adaptation have received limited attention. Supervised adaptation can achieve high accuracy since the intended(More)
Pattern recognition based myoelectric control systems have been well researched; however very few systems have been implemented in a clinical environment. Although classification accuracy or classification error is the metric most often reported to describe how well these control systems perform, very little work research has been conducted to relate this(More)
Targeted reinnervation is a surgical technique developed to increase the number of myoelectric input sites available to control an upper-limb prosthesis. Because signals from the nerves related to specific movements are used to control those missing degrees-of-freedom, the control of a prosthesis using this procedure is more physiologically appropriate(More)
Pattern recognition-based control of myoelectric prostheses has shown great promise in research environments, but has not been optimized for use in a clinical setting. To explore the relationship between classification error, controller delay, and real-time controllability, 13 able-bodied subjects were trained to operate a virtual upper-limb prosthesis(More)
The electrocardiogram (ECG) artifact is a major noise source contaminating the electromyogram (EMG) of torso muscles. This study investigates removal of ECG artifacts in real time for myoelectric prosthesis control, a clinical application that demands speed and efficiency. Three methods with simple and fast implementation were investigated. Removal of ECG(More)
In this study, we developed a robust subject-specific electromyography (EMG) pattern classification technique to discriminate intended manual tasks from muscle activation patterns of stroke survivors. These classifications will enable volitional control of assistive devices, thereby improving their functionality. Twenty subjects with chronic hemiparesis(More)
Amputees cannot feel what they touch with their artificial hands, which severely limits usefulness of those hands. We have developed a technique that transfers remaining arm nerves to residual chest muscles after an amputation. This technique allows some sensory nerves from the amputated limb to reinnervate overlying chest skin. When this reinnervated skin(More)
Despite high classification accuracies (~95%) of myoelectric control systems based on pattern recognition, how well offline measures translate to real-time closed-loop control is unclear. Recently, a real-time virtual test analyzed how well subjects completed arm motions using a multiple-degree of freedom (DOF) classifier. Although this test provided(More)