Learn More
Amputees cannot feel what they touch with their artificial hands, which severely limits usefulness of those hands. We have developed a technique that transfers remaining arm nerves to residual chest muscles after an amputation. This technique allows some sensory nerves from the amputated limb to reinnervate overlying chest skin. When this reinnervated skin(More)
Significant functional impairment of the hand is commonly observed in stroke survivors. Our previous studies suggested that the inability to modulate muscle coordination patterns according to task requirements may be substantial after stroke, but these limitations have not been examined directly. In this study, we aimed to characterize post-stroke(More)
CONTEXT Improving the function of prosthetic arms remains a challenge, because access to the neural-control information for the arm is lost during amputation. A surgical technique called targeted muscle reinnervation (TMR) transfers residual arm nerves to alternative muscle sites. After reinnervation, these target muscles produce electromyogram (EMG)(More)
Pattern recognition-based control of myoelectric prostheses has shown great promise in research environments, but has not been optimized for use in a clinical setting. To explore the relationship between classification error, controller delay, and real-time controllability, 13 able-bodied subjects were trained to operate a virtual upper-limb prosthesis(More)
Despite high classification accuracies (~95%) of myoelectric control systems based on pattern recognition, how well offline measures translate to real-time closed-loop control is unclear. Recently, a real-time virtual test analyzed how well subjects completed arm motions using a multiple-degree of freedom (DOF) classifier. Although this test provided(More)
Real-time pattern recognition control is frequently affected by misclassifications. This study investigated the use of a decision-based velocity ramp that attenuated movement speed after a change in classifier decision. The goal was to improve prosthesis positioning by minimizing the effect of unintended movements. Non-amputee and amputee subjects(More)
In this study, we developed a robust subject-specific electromyography (EMG) pattern classification technique to discriminate intended manual tasks from muscle activation patterns of stroke survivors. These classifications will enable volitional control of assistive devices, thereby improving their functionality. Twenty subjects with chronic hemiparesis(More)
Pattern recognition myoelectric control shows great promise as an alternative to conventional amplitude based control to control multiple degree of freedom prosthetic limbs. Many studies have reported pattern recognition classification error performances of less than 10% during offline tests; however, it remains unclear how this translates to real-time(More)
Pattern recognition myoelectric control in combination with targeted muscle reinnervation (TMR) may provide better real-time control of upper limb prostheses. Current pattern recognition algorithms can classify movements with an off-line accuracy of approximately 95%. When amputees use these systems to control prostheses, motion misclassifications may(More)
  • 1