Bjørn Olav Brandsdal

Learn More
Simplified free energy calculations based on force field energy estimates of ligand-receptor interactions and thermal conformational sampling have emerged as a useful tool in structure-based ligand design. Here we give an overview of the linear interaction energy (LIE) method for calculating ligand binding free energies from molecular dynamics simulations.(More)
Periplasmic chaperone/usher machineries are used for assembly of filamentous adhesion organelles of Gram-negative pathogens in a process that has been suggested to be driven by folding energy. Structures of mutant chaperone-subunit complexes revealed a final folding transition (condensation of the subunit hydrophobic core) on the release of organelle(More)
We have studied the effect of point mutations of the primary binding residue (P1) at the protein-protein interface in complexes of chymotrypsin and elastase with the third domain of the turkey ovomucoid inhibitor and in trypsin with the bovine pancreatic trypsin inhibitor, using molecular dynamics simulations combined with the linear interaction energy(More)
Metallo-β-lactamase (MBL) genes confer resistance to virtually all β-lactam antibiotics and are rapidly disseminated by mobile genetic elements in Gram-negative bacteria. MBLs belong to three different subgroups, B1, B2, and B3, with the mobile MBLs largely confined to subgroup B1. The B3 MBLs are a divergent subgroup of predominantly chromosomally encoded(More)
The association energy upon binding of different amino acids in the specificity pocket of trypsin was evaluated by free energy perturbation calculations on complexes between bovine trypsin (BT) and bovine pancreatic trypsin inhibitor (BPTI). Three simulations of mutations of the primary binding residue (P(1)) were performed (P(1)-Ala to Gly, P(1)-Met to Gly(More)
A systematic study of the linear interaction energy (LIE) method and the possible dependence of its parameterization on the force field and system (receptor binding site) is reported. We have calculated the binding free energy for nine different ligands in complex with P450cam using three different force fields (Amber95, Gromos87, and OPLS-AA). The results(More)
The variation in inhibitor specificity for five different amine inhibitors bound to CST, BT, and the cold-adapted AST has been studied by use of association constant measurements, structural analysis of high-resolution crystal structures, and the LIE method. Experimental data show that AST binds the 1BZA and 2BEA inhibitors 0.8 and 0.5 kcal/mole more(More)
The binding of P1 variants of bovine pancreatic trypsin inhibitor (BPTI) to trypsin has been investigated by means of molecular dynamics simulations. The specific interaction formed between the amino acid at the primary binding (P1) position of the binding loop of BPTI and the specificity pocket of trypsin was estimated by use of the linear interaction(More)