Bjørg Elisabeth Kilavik

Learn More
Neural processing at most stages of the primate visual system is modulated by selective attention, such that behaviorally relevant information is emphasized at the expenses of irrelevant, potentially distracting information. The form of attention best understood at the cellular level is when stimuli at a given location in the visual field must be selected(More)
Since the first descriptions of sensorimotor rhythms by Berger (1929) and by Jasper and Penfield (1949), the potential role of beta oscillations (~13-30 Hz) in the brain has been intensely investigated. We start this review by showing that experimental studies in humans and monkeys have reached a consensus on the facts that sensorimotor beta power is low(More)
Spike time irregularity can be measured by the coefficient of variation. However, it overestimates the irregularity in the case of pronounced firing rate changes. Several alternative measures that are local in time and therefore relatively rate-independent were proposed. Here we compared four such measures: CV(2), LV, IR and SI. First, we asked which(More)
The local field potential (LFP) is a population measure, mainly reflecting local synaptic activity. Beta oscillations (12-40 Hz) occur in motor cortical LFPs, but their functional relevance remains controversial. Power modulation studies have related beta oscillations to a "resting" motor cortex, postural maintenance, attention, sensorimotor binding and(More)
Motor cortical neurons are activated during movement preparation and execution, and in response to task-relevant visual cues. A few studies also report activation before the expected presentation of cues. Here, we study specifically this anticipatory activity preceding visual cues in motor cortical areas. We recorded the activity of 1215 neurons in the(More)
Although beta oscillations (≈ 13-35 Hz) are often considered as a sensorimotor rhythm, their functional role remains debated. In particular, the modulations of beta power during preparation and execution of complex movements in different contexts were barely investigated. Here, we analysed the beta oscillations recorded with electroencephalography (EEG) in(More)
The capacity to accurately anticipate the timing of predictable events is essential for sensorimotor behavior. Motor cortex holds an established role in movement preparation and execution. In this chapter we review the different ways in which motor cortical activity is modulated by event timing in sensorimotor delay tasks. During movement preparation, both(More)
Evoked potentials (EPs) are observed in motor cortical local field potentials (LFPs) during movement execution (movement-related potentials [MRPs]) and in response to relevant visual cues (visual evoked potentials [VEPs]). Motor cortical EPs may be directionally selective, but little is known concerning their relation to other aspects of motor behavior,(More)
22 Evoked potentials (EPs) are observed in motor cortical local field potentials (LFPs) during 23 movement execution (Movement Related Potentials, MRPs) and in response to relevant 24 visual cues (Visual Evoked Potentials, VEPs). Motor cortical EPs may be directionally 25 selective, but little is known concerning their relation to other aspects of motor(More)
UNLABELLED In a recent study, Tan et al. (2014a,b) showed that the increase in β-power typically observed after a movement above sensorimotor regions (β-rebound) is attenuated when movement-execution errors are induced by visual perturbations. Moreover, akin to sensorimotor adaptation, the effect depended on the context in which the errors are experienced.(More)