Björn Löwenadler

Learn More
M2 is the third integral membrane protein of influenza A. M2e, the extracellular, 23 amino acid residues of M2, has been remarkably conserved in all human influenza A strains. This prompted us to evaluate the use of M2e as a potential broad-spectrum immunogen in a mouse model for influenza infection. Genetic fusion of the M2e and hepatitis B virus core(More)
Cholera toxin (CT) is an exceptionally potent adjuvant but, unfortunately, also very toxic. Here we present a powerful new approach to separate toxicity from adjuvanticity by constructing a fusion protein that combines the enzymatically active cholera toxin A1 subunit (CTA1) with targeting to B cells. The CTA1 was genetically linked at its C-terminal end to(More)
Mucosal vaccination requires effective and safe adjuvants. We have evaluated the non-toxic adjuvant CTA1-DD for mucosal vaccination against influenza. CTA1-DD contains the enzymatically active CTA1 subunit of cholera toxin (CT) genetically fused to a gene encoding a dimer of the D-fragment from Staphylococcus aureus protein A. CTA1-DD only binds to(More)
A novel method to obtain specific antibodies against short peptides is described, involving synthesis of the corresponding oligodeoxynucleotides followed by cloning into a new set of fusion vectors, pEZZ8 and pEZZ18, based on two synthetic IgG-binding domains (ZZ) of Staphylococcus aureus protein A. The soluble gene fusion product thus obtained, can be(More)
The gene for Staphylococcal protein A was fused to the coding sequence of bacterial beta-galactosidase, alkaline phosphatase and human insulin-like growth factor I (IGF-I). The fusion proteins, expressed in bacteria, were purified by affinity chromatography on IgG-Sepharose and antibodies were raised in rabbits. All three fusion proteins elicited specific(More)
The ADP-ribosylating enterotoxins, cholera toxin (CT) and Escherichia coli heat-labile toxin, are among the most powerful immunogens and adjuvants yet described. An innate problem, however, is their strong toxic effects, largely due to their promiscuous binding to all nucleated cells via their B subunits. Notwithstanding this, their exceptional(More)
We recently developed a novel immunomodulating gene fusion protein, CTA1-DD, that combines the ADP-ribosylating ability of cholera toxin (CT) with a dimer of an Ig-binding fragment, D, of Staphylococcus aureus protein A. The CTA1-DD adjuvant was found to be nontoxic and greatly augmented T cell-dependent responses to soluble protein Ags after systemic as(More)
The amino acid sequence and the posttranslational modification of the hydrophobic surfactant polypeptide SP-C from canine, rabbit and bovine lungs were established by direct sequence analysis and plasma-desorption time-of-flight mass spectrometry. The results reveal that canine SP-C has only one cysteine residue which, however, is palmitoylated, like the(More)
At present few vaccine candidates exists against potentially pandemic influenza virus infections. We provide compelling evidence that a targeted fusion protein based on the CTA1-DD adjuvant and containing tandem repeats of the matrix protein 2 (M2e) ectodomain epitope, CTA1-3M2e-DD, confers strong protective immunity against a potentially lethal challenge(More)
Intranasal or oral delivery of the chimeric rotavirus VP6 protein MBP::VP6 to mice elicited >90% reductions in fecal rotavirus shedding after murine rotavirus challenge. Protection depended on co-administration of adjuvants, the most effective being bacterial toxins. Because of safety and efficacy concerns following intranasal or oral toxin delivery,(More)