Björn Herschend

  • Citations Per Year
Learn More
We have combined an embedded-cluster model with an extension of the method of increments to treat the adsorption of molecules on a surface. In this way we are able to investigate the physisorption of CO on CeO(2)(110) at the MP2, MP4(SDTQ), and CCSD(T) levels with only moderate computational costs. We find that, at the CCSD(T) level, 25% of the adsorption(More)
Ab initio embedded-cluster calculations have been performed for the CeO2(110) surface using temperature induced structures from molecular dynamics (MD) snapshots. As a first step towards understanding how temperature induced distortions of the surface structure influence the surface oxygen reactivity, the energy cost of removing an O atom from the surface(More)
Ab initio simulations of the Ag/α-Al 2 O 3 (0001) interface have been performed for periodic slab models. We have considered Al-and O-terminated corundum surfaces, low and high substrate coverages by silver, as well as the two preferred Ag adsorption sites. The two different terminations give rise to qualitatively different results: silver physisorption on(More)
Combined molecular dynamics (MD) and quantum mechanics (QM) calculations have been performed for CO adsorbed on MgO(001) at 50 K. The changes in the adsorption energy caused by the surface dynamics have been analyzed, and a clear correlation was found between the dynamic variation of the adsorption energy and the electrostatic field above the adsorption(More)
We have investigated practical and computationally efficient methods for the quantitative prediction of regioisomer distribution in kinetically controlled nucleophilic aromatic substitution reactions. One of the methods is based on calculating the relative stabilities of the isomeric σ-complex intermediates using DFT. We show that predictions from this(More)
We have investigated the scope and limitations of a method for predicting the regioisomer distribution in electrophilic aromatic substitution reactions that are under kinetic control. This method is based on calculation of the relative stabilities of the sigma-complex intermediates using density functional theory. Predictions from this method can be used(More)
  • 1