Learn More
Human decision-making almost always takes place under time pressure. When people are engaged in activities such as shopping, driving, or playing chess, they have to continually balance the demands for fast decisions against the demands for accurate decisions. In the cognitive sciences, this balance is thought to be modulated by a response threshold, the(More)
The ability to suppress one's impulses and actions constitutes a fundamental mechanism of cognitive control, thought to be subserved by the right inferior frontal cortex (rIFC). The neural bases of more selective inhibitory control when selecting between two actions have thus far remained articulated with less precision. Selective inhibition can be explored(More)
In many situations, decision makers need to negotiate between the competing demands of response speed and response accuracy, a dilemma generally known as the speed-accuracy tradeoff (SAT). Despite the ubiquity of SAT, the question of how neural decision circuits implement SAT has received little attention up until a year ago. We review recent studies that(More)
When people make decisions they often face opposing demands for response speed and response accuracy, a process likely mediated by response thresholds. According to the striatal hypothesis, people decrease response thresholds by increasing activation from cortex to striatum, releasing the brain from inhibition. According to the STN hypothesis, people(More)
People tend to slow down after they make an error. This phenomenon, generally referred to as post-error slowing, has been hypothesized to reflect perceptual distraction, time wasted on irrelevant processes, an a priori bias against the response made in error, increased variability in a priori bias, or an increase in response caution. Although the response(More)
PRIOR INFORMATION BIASES THE DECISION PROCESS: actions consistent with prior information are executed swiftly, whereas actions inconsistent with prior information are executed slowly. How is this bias implemented in the brain? To address this question we conducted an experiment in which people had to decide quickly whether a cloud of dots moved coherently(More)
Functional magnetic resonance imaging (fMRI) methods may help in understanding processes of response capture and response inhibition in conflict tasks, such as the Simon task. However, data-driven approaches thus far have not yielded consistent insights into these processes. Here, a theory-driven approach is introduced that capitalizes on individual(More)
Cognitive control processes refer to our ability to coordinate thoughts and actions in accordance with internal goals. In the fronto-lateral cortex such processes have been primarily related to mid-dorsolateral prefrontal cortex (mid-DLPFC). However, recent brain-imaging and meta-analytic studies suggest that a region located more posterior in the(More)
Fronto-basal ganglia pathways play a crucial role in voluntary action control, including the ability to inhibit motor responses. Response inhibition might be mediated via a fast hyperdirect pathway connecting the right inferior frontal gyrus (rIFG) and the presupplementary motor area (preSMA) with the subthalamic nucleus or, alternatively, via the indirect(More)
When people make decisions quickly, accuracy suffers. Traditionally, speed-accuracy tradeoffs (SATs) have been almost exclusively ascribed to changes in the amount of sensory evidence required to support a response ("response caution") and the neural correlates associated with the later stages of decision making (e.g., motor response generation and(More)