Learn More
The dissimilatory adenosine-5'-phosphosulfate reductase is a key enzyme of the microbial sulfate reduction and sulfur oxidation processes. Because the alpha- and beta-subunit-encoding genes, aprBA, are highly conserved among sulfate-reducing and sulfur-oxidizing prokaryotes, they are most suitable for molecular profiling of the microbial community structure(More)
The soxB gene encodes the SoxB component of the periplasmic thiosulfate-oxidizing Sox enzyme complex, which has been proposed to be widespread among the various phylogenetic groups of sulfur-oxidizing bacteria (SOB) that convert thiosulfate to sulfate with and without the formation of sulfur globules as intermediate. Indeed, the comprehensive genetic and(More)
Dissimilatory adenosine-5'-phosphosulfate (APS) reductase (AprBA) is a key enzyme of the dissimilatory sulfate-reduction pathway. Homologues have been found in photo- and chemotrophic sulfur-oxidizing prokaryotes (SOP), in which they are postulated to operate in the reverse direction, oxidizing sulfite to APS. Newly developed PCR assays allowed the(More)
Newly developed PCR assays were used to PCR-amplify and sequence fragments of the dissimilatory adenosine-5'-phosphosulfate (APS) reductase genes (aprBA) comprising nearly the entire gene locus (2.2-2.4 kb, equal to 92-94 % of the protein coding sequence) from 75 sulfate-reducing prokaryotes (SRP) of a taxonomically wide range. Comparative phylogenetic(More)
MADS-box genes encode a family of transcription factors which control diverse developmental processes in flowering plants ranging from root development to flower and fruit development. Through phylogeny reconstructions, most of these genes can be subdivided into defined monophyletic gene clades whose members share similar expression patterns and functions.(More)
Denaturing gradient gel electrophoresis (DGGE)-based analyses of 16S rRNA, aprA, and amoA genes demonstrated that a phylogenetically diverse and complex microbial community was associated with the Caribbean deep-water sponge Polymastia cf. corticata Ridley and Dendy, 1887. From the 38 archaeal and bacterial 16S rRNA phylotypes identified, 53% branched into(More)
The adaptation capability of Desulfovibrio to natural fluctuations in electron acceptor availability was evaluated by studying Desulfovibrio alaskensis strain G20 under varying respiratory, fermentative and methanogenic coculture conditions in chemostats. Transition from lactate to pyruvate in coculture resulted in a dramatic shift in the population(More)
The mineralization of organic matter in anoxic environments relies on the cooperative activities of hydrogen producers and consumers obligately linked by interspecies metabolite exchange in syntrophic consortia that may include sulfate reducing species such as Desulfovibrio. To evaluate the metabolic flexibility of syntrophic Desulfovibrio to adapt to(More)
Due to their adjacent location in the genomes of Desulfovibrio species and their potential for formation of an electron transfer pathway in sulfate-reducing prokaryotes, adenosyl phosphosulfate (APS) reductase (Apr) and quinone-interacting membrane-bound oxidoreductase (Qmo) have been thought to interact together during the reduction of APS. This(More)
Mineralization of organic matter in anoxic environments relies on the cooperative activities of hydrogen producers and consumers linked by interspecies electron transfer in syntrophic consortia that may include sulfate-reducing species (e.g., Desulfovibrio). Physiological differences and various gene repertoires implicated in syntrophic metabolism among(More)