Birgitte S. Nielsen

Learn More
( S)-Glutamic acid (Glu) is the major excitatory neurotransmitter in the central nervous system (CNS) activating the plethora of ionotropic Glu receptors (iGluRs) and metabotropic Glu receptors (mGluRs). In this paper, we present a chemo-enzymatic strategy for the enantioselective synthesis of five new Glu analogues 2a- f ( 2d is exempt) holding a(More)
The potency of a series of eight compounds structurally related with 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), a potent GABA(A) partial agonist exhibiting GABA(C) rho(1) antagonist effect (K(i)=25 microM), was determined electrophysiologically using homomeric human GABA(C) rho(1) receptors expressed in Xenopus oocytes. Protolytic properties(More)
In this study, we have determined and compared the pharmacological profiles of ibotenic acid and its isothiazole analogue thioibotenic acid at native rat ionotropic glutamate (iGlu) receptors and at recombinant rat metabotropic glutamate (mGlu) receptors expressed in mammalian cell lines. Thioibotenic acid has a distinct pharmacological profile at group III(More)
We have previously described (RS)-2-amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic acid (4-AHCP) as a highly effective agonist at non-N-methyl-d-aspartate (non-NMDA) glutamate (Glu) receptors in vivo, which is more potent than (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) but inactive at NMDA receptors.(More)
In the mammalian central nervous system, (S)-glutamate (Glu) is released from the presynaptic neuron where it activates a plethora of pre- and postsynaptic Glu receptors. The fast acting ionotropic Glu receptors (iGluRs) are ligand gated ion channels and are believed to be involved in a vast number of neurological functions such as memory and learning,(More)
A series of ring-substituted analogues of imidazole-4-acetic acid (IAA, 4), a partial agonist at both GABAA and GABAC receptors (GABA = gamma-aminobutyric acid), have been synthesized. The synthesized compounds 8a-l have been evaluated as ligands for the alpha1beta2gamma2S GABAA receptors and the rho1 GABAC receptors using the FLIPR membrane potential (FMP)(More)
Conformationally restricted glutamate analogues have been pharmacologically characterized at AMPA and kainate receptors and the crystal structures have been solved of the ligand (2S,1'R,2'S)-2-(2'-carboxycyclobutyl)glycine (CBG-IV) in complex with the ligand binding domains of the AMPA receptor GluA2 and the kainate receptor GluK3. These structures show(More)
A series of bioisosteric 4-(aminomethyl)-1-hydroxypyrazole (4-AHP) analogues of muscimol, a GABA(A) receptor agonist, has been synthesized and pharmacologically characterized at native and selected recombinant GABA(A) receptors. The unsubstituted 4-AHP analogue (2a) (EC(50) 19 μM, R(max) 69%) was a moderately potent agonist at human α(1)β(2)γ(2) GABA(A)(More)
The kainic acid (KA) receptors belong to the class of glutamate (Glu) receptors in the brain and constitute a promising target for the treatment of neurological and/or psychiatric diseases such as schizophrenia, major depression, and epilepsy. Five KA subtypes have been identified and named GluK1-5. In this article, we present the discovery of(More)
In the mammalian central nervous system (CNS), the action of sodium dependent excitatory amino acid transporters (EAATs) is responsible for termination of glutamatergic neurotransmission by reuptake of ( S) -glutamate (Glu) from the synaptic cleft. Five EAAT subtypes have been identified, of which EAAT1-4 are present in the CNS, while EAAT5 is localized(More)