Birgit Wilding

Learn More
Nitrile reductase QueF catalyzes the reduction of 2-amino-5-cyanopyrrolo[2,3-d]pyrimidin-4-one (preQ0) to 2-amino-5-aminomethylpyrrolo[2,3-d]pyrimidin-4-one (preQ1) in the biosynthetic pathway of the hypermodified nucleoside queuosine. It is the only enzyme known to catalyze a reduction of a nitrile to its corresponding primary amine and could therefore(More)
The enzyme QueF catalyzes a four-electron reduction of a nitrile group into an amine, the only reaction of this kind known in biology. In nature, QueF converts 7-cyano-7-deazaguanine (preQ0) into 7-aminomethyl-7-deazaguanine (preQ1) for the biosynthesis of the tRNA-inserted nucleoside queuosine. The proposed QueF mechanism involves a covalent thioimide(More)
Phenotypic screens, which focus on measuring and quantifying discrete cellular changes rather than affinity for individual recombinant proteins, have recently attracted renewed interest as an efficient strategy for drug discovery. In this article, we describe the discovery of a new chemical probe, bisamide (CCT251236), identified using an unbiased(More)
Code design of unreinforced masonry (URM) brick buildings is based on elastic analysis, which requires as input, among others, estimates of the in-plane drift capacity at the considered limit states. Current approaches assess the drift capacity of URM walls by means of empirical models with most codes relating the drift capacity to the failure mode and wall(More)
Paclitaxel (taxol) is an antimicrotubule agent widely used in the treatment of cancer. Taxol is prepared in a semisynthetic route by coupling the N-benzoyl-(2R,3S)-3-phenylisoserine sidechain to the baccatin III core structure. Precursors of the taxol sidechain have previously been prepared in chemoenzymatic approaches using acylases, lipases, and(More)
7-Cyano-7-deazaguanine synthase (E.C. 6.3.4.20) is an enzyme that catalyzes the formation of a nitrile from a carboxylic acid and ammonia at the expense of ATP. The protein from G. kaustophilus was heterologously expressed, and its biochemical characteristics were explored by using a newly developed HPLC-MS based assay, (31) P NMR, and a fluorescence-based(More)
  • 1