Learn More
Soil is one of the major habitats of bacteria and fungi. In this arena their interactions are part of a communication network that keeps microhabitats in balance. Prominent mediator molecules of these inter- and intraorganismic relationships are inorganic and organic microbial volatile compounds (mVOCs). In this review the state of the art regarding the(More)
Many and complex plant-bacteria inter-relationships are found in the rhizosphere, since plants release a variety of photosynthetic exudates from their roots and rhizobacteria produce multifaceted specialized compounds including rich mixtures of volatiles, e.g., the bouquet of Serratia odorifera 4Rx13 is composed of up to 100 volatile organic and inorganic(More)
Scents are well known to be emitted from flowers and animals. In nature, these volatiles are responsible for inter- and intra-organismic communication, e.g. attraction and defence. Consequently, they influence and improve the establishment of organisms and populations in ecological niches by acting as single compounds or in mixtures. Despite the known(More)
Volatiles are efficient mediators of chemical communication acting universally as attractant, repellent or warning signal in all kingdoms of life. Beside this broad impact volatiles have in nature, scents are also widely used in pharmaceutical, food and cosmetic industries, so the identification of new scents is of great industrial interest. Despite this(More)
  • Susanna Roeder, Katharina Dreschler, Markus Wirtz, Simona M. Cristescu, Frans J. M. van Harren, Rüdiger Hell +1 other
  • 2009
S'adenosyl-L: -methionine (SAM) is a ubiquitous methyl donor and a precursor in the biosynthesis of ethylene, polyamines, biotin, and nicotianamine in plants. Only limited information is available regarding its synthesis (SAM cycle) and its concentrations in plant tissues. The SAM concentrations in flowers of Nicotiana suaveolens were determined during(More)
Trichoderma species are present in many ecosystems and some strains have the ability to reduce the severity of plant diseases by activating various defense pathways via specific biologically active signaling molecules. Hence we investigated the effects of low molecular weight volatile compounds of Trichoderma asperellum IsmT5 on Arabidopsis thaliana. During(More)
Nicotiana species of the section Alatae emit a characteristic floral scent comprising the‚ cineole cassette’ monoterpenes 1,8-cineole, limonene, myrcene, β-pinene, α-pinene, sabinene and α-terpineol. All previously isolated ‘cineole cassette’-monoterpene synthase genes are multi product enzymes that synthesize the seven compounds of the ‘cineole cassette’.(More)
Bacteria release a plethora of volatile organic compounds, including compounds with extraordinary structures. Sodorifen (IUPAC name: 1,2,4,5,6,7,8-heptamethyl-3-methylenebicyclo[3.2.1]oct-6-ene) is a recently identified and unusual volatile hydrocarbon that is emitted by the rhizobacterium Serratia plymuthica 4R×13. Sodorifen comprises a bicyclic ring(More)
Rhizobacteria produce an enormous amount of volatile compounds, however, the function of these metabolites is scarcely understood. Investigations evaluating influences on plants performed in various laboratories using individually developed experimental setups revealed different and often contradictory results, e.g., ranging from a significant plant growth(More)
Volatile organic compounds are secondary metabolites emitted by all organisms, especially by plants and microbes. Their role as aboveground signals has been established for decades. Recent evidence suggests that they might have a non-negligible role belowground and might be involved in root-root and root-microbial/pest interactions. Our aim here was to make(More)