Birgit Pfitzmann

Learn More
We present a rigorous model for secure reactive systems in asynchronous networks with a sound cryptographic semantics, supporting abstract specifications and the composition of secure systems. This enables modular proofs of security, which is essential in bridging the gap between the rigorous proof techniques of cryptography and toolsupported formal proof(More)
One-way accumulators, introduced by Benaloh and de Mare, can be used to accumulate a large number of values into a single one, which can then be used to authenticate every input value without the need to transmit the others. However, the one-way property does is not suucient for all applications. In this paper, we generalize the deenition of accumulators(More)
We consider compositional properties of reactive systems that are secure in a cryptographic sense. We follow the wellknown simulatability approach, i.e., the specification is an ideal system and a real system should in some sense simulate it. We recently presented the first detailed general definition of this concept for reactive systems that allows(More)
Bridging the gap between formal methods and cryptography has recently received a lot of interest, i.e., investigating to what extent proofs of cryptographic protocols made with abstracted cryptographic operations are valid for real implementations. However, a major goal has not been achieved yet: a soundness proof for an abstract crypto-library as needed(More)
Recently we showed how to justify a Dolev-Yao type model of cryptography as used in virtually all automated protocol provers under active attacks and in arbitrary protocol environments. The justification was done by defining an ideal system handling Dolev-Yao-style terms and a cryptographic realization with the same user interface, and by showing that the(More)
"Undeniable" (or perhaps rather "invisible") signatures are digital signatures which the recipient cannot show round without the help of the signer. If forced to either acknowledge or deny a signature, however, the signer cannot deny it if it is authentic. We present the first undeniable signature scheme which is unconditionally secure for the signer(More)