Learn More
The growing number of large-scale neuronal network models has created a need for standards and guidelines to ease model sharing and facilitate the replication of results across different simulators. To foster community efforts towards such standards, the International Neuroinformatics Coordinating Facility (INCF) has formed its Multiscale Modeling program,(More)
Can the topology of a recurrent spiking network be inferred from observed activity dynamics? Which statistical parameters of network connectivity can be extracted from firing rates, correlations and related measurable quantities? To approach these questions, we analyze distance dependent correlations of the activity in small-world networks of neurons with(More)
The function of cortical networks depends on the collective interplay between neurons and neuronal populations, which is reflected in the correlation of signals that can be recorded at different levels. To correctly interpret these observations it is important to understand the origin of neuronal correlations. Here we study how cells in large recurrent(More)
Networks of well-known dynamical units but unknown interaction topology arise across various fields of biology, including genetics, ecology, and neuroscience. The collective dynamics of such networks is often sensitive to the presence (or absence) of individual interactions, but there is usually no direct way to probe for their existence. Here we present an(More)
As computational neuroscience matures, many simulation environments are available that are useful for neuronal network modeling. However, methods for successfully documenting models for publication and for exchanging models and model components among these projects are still under development. Here we briefly review existing software and applications for(More)
Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of(More)
Random networks of integrate-and-fire neurons with strong current-based synapses can, unlike previously believed, assume stable states of sustained asynchronous and irregular firing, even without external random background or pacemaker neurons. We analyze the mechanisms underlying the emergence, lifetime and irregularity of such self-sustained activity(More)
Instantaneous firing rates are commonly used to describe either the compound spiking activity of neuron ensembles (population rate) or the trial-averaged response of individual neurons to multiple repetitions of the same stimulus. The dynamics of firing rates is often studied by means of population or firing-rate models. The main motivation for using such(More)
Firing-rate models provide a practical tool for studying signal processing in the early visual system, permitting more thorough mathematical analysis than spike-based models. We show here that essential response properties of relay cells in the lateral geniculate nucleus (LGN) can be captured by surprisingly simple firing-rate models consisting of a(More)
We investigate the generation and annihilation of persistent localized activity states, so-called bumps, in response to transient spatiotemporal external input in a two-population neural-field model of the Wilson-Cowan type. Such persistent cortical states have been implicated as a biological substrate for short-term working memory, that is, the ability to(More)