Birgit Honrath

  • Citations Per Year
Learn More
Mitochondrial calcium ([Ca2+]m) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the(More)
Mitochondrial impairment induced by oxidative stress is a main characteristic of intrinsic cell death pathways in neurons underlying the pathology of neurodegenerative diseases. Therefore, protection of mitochondrial integrity and function is emerging as a promising strategy to prevent neuronal damage. Here, we show that pharmacological inhibition of(More)
Alteration of endoplasmic reticulum (ER) Ca2+ homeostasis leads to excessive cytosolic Ca2+ accumulation and delayed neuronal cell death in acute and chronic neurodegenerative disorders. While our recent studies established a protective role for SK channels against excessive intracellular Ca2+ accumulation, their functional role in the ER has not been(More)
Ca2+-activated K+ channels (KCa) are expressed at the plasma membrane and in cellular organelles. Expression of all KCa channel subtypes (BK, IK and SK) has been detected at the inner mitochondrial membrane of several cell types. Primary functions of these mitochondrial KCa channels include the regulation of mitochondrial ROS production, maintenance of the(More)
HBV represents the most common chronic viral infection and major cause of hepatocellular carcinoma (HCC), although its exact role in liver tumorigenesis is unclear. Massive storage of the small (SHBs), middle (MHBs) and large surface (LHBs) HBV envelope proteins leads to cell stress and sustained inflammatory responses. Cannabinoid (CB) system is involved(More)
Ca2+-activated K+ (KCa) channels regulate after-hyperpolarization in many types of neurons in the central and peripheral nervous system. Small conductance Ca2+-activated K+ (KCa2/SK) channels, a subfamily of KCa channels, are widely expressed in the nervous system, and in the cardiovascular system. Voltage-independent SK channels are activated by(More)
The enzyme 15-lipoxygenase-1 (15-LOX-1) plays a dual role in diseases with an inflammatory component. On one hand 15-LOX-1 plays a role in pro-inflammatory gene expression and on the other hand it has been shown to be involved in central nervous system (CNS) disorders by its ability to mediate oxidative stress and damage of mitochondrial membranes under(More)
Ca2+ ions play a fundamental role in cell death mediated by oxidative glutamate toxicity or oxytosis, a form of programmed cell death similar and possibly identical to other forms of cell death like ferroptosis. Ca2+ influx from the extracellular space occurs late in a cascade characterized by depletion of the intracellular antioxidant glutathione,(More)
The crosstalk between different organelles allows for the exchange of proteins, lipids and ions. Endoplasmic reticulum (ER) and mitochondria are physically linked and signal through the mitochondria-associated membrane (MAM) to regulate the transfer of Ca2+ from ER stores into the mitochondrial matrix, thereby affecting mitochondrial function and(More)
  • 1