Birgit Besenbeck

Learn More
The eyes absent 1 protein (Eya1) plays an essential role in the development of various organs in both invertebrates and vertebrates. Mutations in the human EYA1 gene are linked to BOR (branchio-oto-renal) syndrome, characterized by kidney defects, hearing loss, and branchial arch anomalies. For a better understanding of Eya1's function, we have set out to(More)
Mutations in inhibitory glycine receptor (GlyR) subunit genes are associated with neuromotor diseases in man and mouse. To use the potential of the mouse mutants as animal models of human disease, we altered GlyR levels in mutant mice and studied their phenotype. A transgene coding for the beta subunit of the rat GlyR was introduced into the genetic(More)
The development of the metanephric kidney proceeds through reciprocal interactions between the metanephric mesenchyme and the ureteric bud. One important molecule mediating this interaction is the glial cell line-derived neurotrophic factor Gdnf, which is secreted by the mesenchymal cells. Regulation of Gdnf expression is largely unknown. We show here that(More)
The Wilms' tumor suppressor gene Wt1 encodes a zinc-finger transcription factor that plays an essential role in organ development, most notably of the kidney. Despite its importance for organogenesis, knowledge of the regulation of Wt1 expression is scarce. Here, we have used transgenesis in zebrafish harboring two wt1 genes, wt1a and wt1b, in order to(More)
The Wilms' tumor protein Wt1 plays an essential role in mammalian urogenital development. WT1 mutations in humans lead to a variety of disorders, including Wilms' tumor, a pediatric kidney cancer, as well as Frasier and Denys-Drash syndromes. Phenotypic anomalies in Denys-Drash syndrome include pseudohermaphroditism and sex reversal in extreme cases. We(More)
Tandem fluorescent protein timers (tFTs) report on protein age through time-dependent change in color, which can be exploited to study protein turnover and trafficking. Each tFT, composed of two fluorescent proteins (FPs) that differ in maturation kinetics, is suited to follow protein dynamics within a specific time range determined by the maturation rates(More)
Mutations in the human EYA1 gene have been associated with several human diseases including branchio-oto (BO) and branchio-oto-renal (BOR) syndrome, as well as congenital cataracts and ocular anterior segment anomalies. BOR patients suffer from severe malformations of the ears, branchial arches and kidneys. The phenotype of Eya1-heterozygous mice resembles(More)
  • 1