Learn More
Our understanding of the cellular and molecular mechanisms underlying the adult neural stem cell state remains fragmentary. To provide new models on this issue, we searched for stem cells in the adult brain of the zebrafish. Using BrdU tracing and immunodetection of cell-type-specific markers, we demonstrate that the adult zebrafish telencephalon contains(More)
We report evidence for a mechanism for the maintenance of long-range conserved synteny across vertebrate genomes. We found the largest mammal-teleost conserved chromosomal segments to be spanned by highly conserved noncoding elements (HCNEs), their developmental regulatory target genes, and phylogenetically and functionally unrelated "bystander" genes.(More)
Within the vertebrate embryonic neural plate, the first neuronal clusters often differentiate at the border of patterning identities. Whether the information inherent in the intersection of patterning identities alone controls all aspects of neuronal cluster development (location, identity, and size) is unknown. Here, we focus on the cluster of the medial(More)
Transcription factors of the bHLH class play crucial roles in neurogenesis by controlling the location and timing of neuronal commitment and differentiation, as well as influencing neuronal identity. Proneural bHLH factors belong to the Olig, Neurogenin, NeuroD, Achaete-scute and Atonal subfamilies, and are expressed in partially overlapping or(More)
All subdivisions of the adult zebrafish brain maintain niches of constitutive neurogenesis, sustained by quiescent and multipotent progenitor populations. In the telencephalon, the latter potential neural stem cells take the shape of radial glia aligned along the ventricle and are controlled by Notch signalling. With the aim of identifying new markers of(More)
Current models of vertebrate adult neural stem cells are largely restricted to the rodent forebrain. To extract the general mechanisms of neural stem cell biology, we sought to identify new adult stem cell populations, in other model systems and/or brain areas. The teleost zebrafish appears to be an ideal system, as cell proliferation in the adult zebrafish(More)
The zebrafish adult brain contains numerous neural progenitors and is a good model to approach the general mechanisms of adult neural stem cell maintenance and neurogenesis. Here we use this model to test for a correlation between Fgf signaling and cell proliferation in adult progenitor zones. We report expression of Fgf signals (fgf3,4,8a,8b,17b),(More)
The maintenance of progenitor cells is a crucial aspect of central nervous system development and maturation, and bHLH transcription factors of the E(Spl) subfamily are involved in this process in all vertebrates studied to date. In the zebrafish embryonic neural plate, a large number of E(Spl) genes (her genes) are at play. We review recent data on this(More)
  • 1